scholarly journals Towards FAIR GNSS data: challenges and open problems

Author(s):  
Anna Miglio ◽  
Carine Bruyninx ◽  
Andras Fabian ◽  
Juliette Legrand ◽  
Eric Pottiaux ◽  
...  

<p>Nowadays, we measure positions on Earth’s surface thanks to Global Navigation Satellite Systems (GNSS) e.g. GPS, GLONASS, and Galileo. Activities such as navigation, mapping, and surveying rely on permanent GNSS tracking stations located all over the world.<br>The Royal Observatory of Belgium (ROB) maintains and operates a repository containing data from hundreds of GNSS stations belonging to the European GNSS networks (e.g. EUREF, Bruyninx et al., 2019). </p><p>ROB’s repository contains GNSS data that are openly available and rigorously curated. The curation data include detailed GNSS station descriptions (e.g. location, pictures, and data author) as well as quality indicators of the GNSS observations.</p><p>However, funders and research policy makers are progressively asking for data to be made <em>Findable, Accessible, Interoperable, and Reusable (FAIR)</em> and therefore to increase data transparency, discoverability, interoperability, and accessibility.</p><p>In particular, within the GNSS community, there is no shared agreement yet on the need for making data <em>FAIR</em>. Therefore, turning GNSS data <em>FAIR</em> presents many challenges and, although <em>FAIR</em> data has been included in EUREF’s strategic plan, no practical roadmap has been implemented so far. We will illustrate the specific difficulties and the need for an open discussion including also other communities working on <em>FAIR</em> data.</p><p>For example, making GNSS data easily <em>findable</em> and <em>accessibl</em>e would require to attribute persistent identifiers to the data. It is worth noting that the International GNSS Service (IGS) is only now beginning to consider the attribution of DOIs (Digital Object Identifiers) to GNSS data, mainly to allow data citation and acknowledgement of data providers. Some individual GNSS data repositories are using DOIs (such as UNAVCO, USA).  Are DOIs the only available option or are there more suitable types of URIs (Uniform Resource Identifiers) to consider?</p><p>The GNSS community would greatly benefit from <em>FAIR</em> data practices, as at present, (almost) no licenses have been attributed to GNSS data, data duplication is still an issue, historical provenance information is not available because of data manipulations in data centres, citation of the data providers is far from the rule, etc.</p><p>To move further along the path towards <em>FAIR</em> GNSS data, one would need to implement standardised metadata models to ensure data <em>interoperability</em>, but, as several metadata standards are already in use in various scientific disciplines, which one to choose?</p><p>Then, to facilitate the <em>reuse</em> (and long-term preservation) of GNSS data, all metadata should be properly linked to the corresponding data and additional metadata, such as provenance and license information. The latter is a good example up for discussion: despite the fact that ‘CC BY’ license is already assigned to some of the GNSS data, other licenses might need to be enabled.</p><p> </p><p>Bruyninx C., Legrand J., Fabian A., Pottiaux E. (2019) “GNSS Metadata and Data Validation in the EUREF Permanent Network”. GPS Sol., 23(4), https://doi: 10.1007/s10291-019-0880-9           </p>

2021 ◽  
Author(s):  
Periklis-Konstantinos Diamantidis ◽  
Grzegorz Kłopotek ◽  
Rüdiger Haas ◽  
Jan Johansson

<p>The dawn of Beidou and Galileo as operational Global Navigation Satellite Systems (GNSS) alongside Global Positioning System (GPS) and GLONASS as well as new features that are now present in all GNSS, such as a triple-frequency setup, create new possibilities concerning improved estimation and assessment of various geodetic products. In particular, the multi-GNSS analysis gives an access to a better sky coverage allowing for improved estimation of zenith wet delays (ZWD) and tropospheric gradients (GRD), and can be used to determine integer phase ambiguities. The Multi-GNSS Experiment (MGEX), as realised by the International GNSS Service (IGS), provides orbit, clock and observation data for all operational GNSS. To take advantage of the new capabilities that these constellations bring, space-geodetic software packages have been retrofitted with Multi-GNSS-compliant modules. Based on this, two software packages, namely GipsyX and c5++, are utilised by way of the static Precise Point Positioning (PPP) approach using six months of data, and an assessment of the derived geodetic products is carried out for several GNSS receivers located at the Onsala core site. More specifically, we perform both single-constellation and multi-GNSS data analysis using Kalman filter and least-squares methods and assess the quality of the derived station positions, ZWD and GRD. A combined solution using all GNSS constellations is carried out and the improvement with respect to station position repeatabilities is assessed for each station. Results from the two software packages are compared with respect to each other and the discrepancies are discussed. Inter-system biases, which homogenise the different time scale that each GNSS operates in, and are necessary for the multi-GNSS combination, are estimated and presented. Finally, the applied inter-system weighting and its impact on the derived geodetic products are discussed.</p>


2020 ◽  
Author(s):  
Periklis-Konstantinos Diamantidis ◽  
Grzegorz Klopotek ◽  
Rüdiger Haas

<div>The emergence of BeiDou and Galileo as operational Global Navigation Satellite Systems (GNSS), in addition to Global Positioning System (GPS) and GLONASS which are already in use, opens up possibilities in delivering geodetic products with higher precision. Apart from ensuring the homogeneity of the derived products, multi-GNSS analysis takes the advantage of new frequencies and an improved sky coverage. This should lead to better phase ambiguity resolution and an improved estimation of target parameters such as zenith wet delays (ZWD), troposphere gradients (GRD) and station positions. The International GNSS Service (IGS) has realised this potential by initiating the Multi-GNSS Experiment (MGEX) which provides orbit, clock and observation data for all operational GNSS. Correspondingly, the multi-technique space geodetic analysis software c5++ has been augmented with a MGEX-compliant GNSS module. Based on this new module and the Precise Point Positioning (PPP) approach using six-month of data, an assessment of the derived geodetic products is carried out for several GNSS receivers located at the Onsala core site. More specifically, we perform both single- and multi-GNSS data analysis using Kalman filter and least-squares methods and assess the quality of the derived station positions, ZWD and GRD. A combined solution using all GNSS together is carried out and the improvement with respect to station position repeatabilities is assessed for each station. Inter-system biases, which homogenise the different time scale that each GNSS operates in and are necessary for the multi-GNSS combination, are estimated and presented. Finally, the applied inter-system weighting is discussed as well as its impact on the derived geodetic products.</div>


Agronomy ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 230 ◽  
Author(s):  
Luisa Martelloni ◽  
Marco Fontanelli ◽  
Stefano Pieri ◽  
Christian Frasconi ◽  
Lisa Caturegli ◽  
...  

Before the introduction of positioning technologies in agriculture practices such as global navigation satellite systems (GNSS), data collection and management were time-consuming and labor-intensive tasks. Today, due to the introduction of advanced technologies, precise information on the performance of agricultural machines, and smaller autonomous vehicles such as robot mowers, can be collected in a relatively short time. The aim of this work was to track the performance of a robot mower in various turfgrass areas of an equal number of square meters but with four different shapes by using real-time kinematic (RTK)-GNSS devices, and to easily extract data by a custom built software capable of calculating the distance travelled by the robot mower, the forward speed, the cutting area, and the number of intersections of the trajectories. These data were then analyzed in order to provide useful functioning information for manufacturers, entrepreneurs, and practitioners. The path planning of the robot mower was random and the turfgrass area for each of the four shapes was 135 m2 without obstacles. The distance travelled by the robot mower, the mean forward speed, and the intersections of the trajectories were affected by the interaction between the time of cutting and the shape of the turfgrass. For all the different shapes, the whole turfgrass area was completely cut after two hours of mowing. The cutting efficiency decreased by increasing the time, as a consequence of the increase in overlaps. After 75 minutes of cutting, the efficiency was about 35% in all the turfgrass areas shapes, thus indicating a high level of overlapping.


2020 ◽  
Vol 164 ◽  
pp. 03052
Author(s):  
Volodymir Kharchenko ◽  
Valeriy Konin ◽  
Olexiy Pogurelsky ◽  
Ekaterina Stativa

The goal of the research is to develop a of Global Navigation Satellite Systems quality monitoring methodology based on available equipment in the satellite navigation laboratory of the National Aviation University (Kyiv, Ukraine). For successful the goal achievement it is necessary to solve follow list of tasks: to determine the composition of the necessary equipment and order of it installing and connection; to develop the necessary software for processing received GNSS data; to estimate the GNSS characteristics with the help of experimental data. The primary focus of this research is on the following characteristics: accuracy (in terms of deviation coordinates in horizontal and vertical planes from the coordinates of the reference station and numerical values in meters); integrity information (summarized in the form of horizontal and Stanford plots); overall availability of service – measured as the availability of signals meeting the requirements for instrumented approaches with vertical guidance (APV) APV-1, APV-2, and Category 1 (CAT-1) precision approaches to runways. The main result of this research is developing software that could be applied for continuous monitoring of GNSS performances. The possibilities of it were successfully tested with the help of experimental data received from GPS and Galileo satellites.


Sensors ◽  
2020 ◽  
Vol 20 (13) ◽  
pp. 3631
Author(s):  
Junsheng Ding ◽  
Junping Chen

Tropospheric delay is one of the major error sources in GNSS (Global Navigation Satellite Systems) positioning. Over the years, many approaches have been devised which aim at accurately modeling tropospheric delays, so-called troposphere models. Using the troposphere data of over 16,000 global stations in the last 10 years, as calculated by the Nevada Geodetic Laboratory (NGL), this paper evaluates the performance of the empirical troposphere model GPT3, which is the latest version of the GPT (Global Pressure and Temperature) series model. Owing to the large station number, long time-span and diverse station distribution, the spatiotemporal properties of the empirical model were analyzed using the average deviation (BIAS) and root mean square (RMS) error as indicators. The experimental results demonstrate that: (1) the troposphere products of NGL have the same accuracy as the IGS (International GNSS Service) products and can be used as a reference for evaluating general troposphere models. (2) The global average BIAS of the ZTD (zenith total delay) estimated by GPT3 is −0.99 cm and the global average RMS is 4.41 cm. The accuracy of the model is strongly correlated with latitude and ellipsoidal height, showing obviously seasonal variations. (3) The global average RMS of the north gradient and east gradient estimated by GPT3 is 0.77 mm and 0.73 mm, respectively, which are strongly correlated with each other, with values increasing from the equator to lower latitudes and decreasing from lower to higher latitudes.


2020 ◽  
Author(s):  
Lars Prange ◽  
Arturo Villiger ◽  
Stefan Schaer ◽  
Rolf Dach ◽  
Dmitry Sidorov ◽  
...  

<p>The International GNSS service (IGS) has been providing precise reference products for the Global Navigation Satellite Systems (GNSS) GPS and (starting later) GLONASS since more than 25 years. These orbit, clock correction, coordinate reference frame, troposphere, ionosphere, and bias products are freely distributed and widely used by scientific, administrative, and commercial users from all over the world. The IGS facilities needed for data collection, product generation, product combination, as well as data and product dissemination, are well established. The Center for Orbit Determination in Europe (CODE) is one of the Analysis Centers (AC) contributing to the IGS from the beginning. It generates IGS products using the Bernese GNSS Software.</p><p> </p><p>In the last decade new GNSS (European Galileo and Chinese BeiDou) and regional complementary systems to GPS (Japanese QZSS and Indian IRNSS/NAVIC) were deployed. The existing GNSS are constantly modernized, offering - among others - more stable satellite clocks and new signals. The exploitation of the new data and their integration into the existing IGS infrastructure was the goal of the Multi-GNSS EXtension (MGEX) when it was initiated in 2012. CODE has been participating in the MGEX with its own orbit and clock solution from the beginning. Since 2014 CODE’s MGEX (COM) contribution considers five GNSS, namely GPS, GLONASS, Galileo, BeiDou2 (BDS2), and QZSS. We provide an overview of the latest developments of the COM solution with respect to processing strategy, orbit modelling, attitude modelling, antenna calibrations, handling of code and phase biases, and ambiguity resolution. The impact of these changes on the COM products will be discussed.</p><p> </p><p>Recent assessment showed that especially the Galileo analysis within the MGEX has reached a state of maturity, which is almost comparable to GPS and GLONASS. Based on this finding the IGS decided to consider Galileo in its third reprocessing campaign, which will contribute to the next ITRF. Recognizing the demands expressed by the GNSS community, CODE decided in 2019 to go a step further and consider Galileo also in its IGS RAPID and ULTRA-RAPID reference products. We summarize our experiences from the first months of triple-system (ULTRA)-RAPID analysis including GPS, GLONASS, and Galileo. Finally we provide an outlook of CODE’s IGS analysis with the focus on the new GNSS.</p>


2020 ◽  
Author(s):  
Zhilu Wu ◽  
Yanxiong Liu ◽  
Yang Liu ◽  
Jungang Wang ◽  
Xiufeng He ◽  
...  

Abstract. The calibration microwave radiometer (CMR) onboard Haiyang-2A satellite provides wet tropospheric delays correction for altimetry data, which can also contribute to the understanding of climate system and weather processes. Ground-based Global Navigation Satellite Systems (GNSS) provide precise PWV with high temporal resolution and could be used for calibration and monitoring of the CMR data, and shipborne GNSS provides accurate PWV over open oceans, which can be directly compared with uncontaminated CMR data. In this study, the HY-2A CMR water vapor product is validated using ground-based GNSS observations of 100 IGS stations along the coastline and 56-day shipborne GNSS observations over the Indian Ocean. The processing strategy for GNSS data and CMR data is discussed in detail. Special efforts were made to the quality control and reconstruction of contaminated CMR data. The validation result shows that HY-2A CMR PWV agrees well with ground-based GNSS PWV with 2.67 mm in RMS within 100 km. Geographically, the RMS is 1.12 mm in the polar region and 2.78 mm elsewhere. The PWV agreement between HY-2A and shipborne GNSS shows a significant correlation with the distance between the ship and the satellite footprint, with an RMS of 1.57 mm for the distance threshold of 100 km. Ground-based GNSS and shipborne GNSS agree with HY-2A CMR well with no obvious system error.


2013 ◽  
Vol 59 (Special Issue) ◽  
pp. S65-S70 ◽  
Author(s):  
V. Rataj ◽  
J. Galambošová ◽  
M. Vašek

Several methods are used presently to assess the accuracy of machinery guidance systems. However, these offer a limited number of records and are time and cost consuming. As the machinery is often equipped with a monitoring system for the management purposes, these data can be used. The aim of this work was to develop and verify a method to determine the accuracy of the machinery guidance systems based on a large dataset obtained from the machinery monitoring system. The proposed method uses the transformation of global navigation satellite systems (GNSS) data into a rectangular coordinate system SJTSK (National projection system – Krovak projection). Based on the geometry principle, the ideal line can be determined, and afterwards, the off-track error of each actual position can be calculated. After the verification of this method, it can be concluded that it brings benefits in terms of further use of the data from the monitoring systems, the estimation of the error based on a robust dataset, elimination of subjective and measurement method errors, as well as spatial localisation of the off-track errors at the field.


Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1768
Author(s):  
Chris Danezis ◽  
Miltiadis Chatzinikos ◽  
Christopher Kotsakis

Permanent Global Navigation Satellite Systems (GNSS) reference stations are well established as a powerful tool for the estimation of deformation induced by man-made or physical processes. GNSS sensors are successfully used to determine positions and velocities over a specified time period, with unprecedented accuracy, promoting research in many safety-critical areas, such as geophysics and geo-tectonics, tackling problems that torment traditional equipment and providing deformation products with absolute accuracy. Cyprus, being located at the Mediterranean fault, exhibits a very interesting geodynamic regime, which has yet to be investigated thoroughly. Accordingly, this research revolves around the estimation of crustal deformation in Cyprus using GNSS receivers. CYPOS (CYprus POsitioning System), a network of seven permanent GNSS stations has been operating since 2008, under the responsibility of the Department of Lands and Surveys. The continuous flow of positioning data collected over this network, offers the required information to investigate the behavior of the crustal deformation field of Cyprus using GNSS sensors for the first time. This paper presents the results of a multi-year analysis (11/2011–01/2017) of daily GNSS data and provides inferences of linear and nonlinear deforming signals into the position time series of the network stations. Specifically, 3D station velocities and seasonal periodic displacements are jointly estimated and presented via a data stacking approach with respect to the IGb08 reference frame.


Sign in / Sign up

Export Citation Format

Share Document