PAH natural attenuation in Mediterranean forest soils

Author(s):  
Enrica Picariello ◽  
Erland Bååth ◽  
Daniela Baldantoni ◽  
Flavia De Nicola

<p>Polycyclic aromatic hydrocarbons (PAHs) are worldwide contaminants and, due to their long-range transport, they can accumulate far from the emission sources, in carbon-rich forest soils; thus new exploration in the indigenous microbial response to PAH exposure is important to deeper understanding of PAH natural degradation process. Since most of the studies are limited to aged PAH contaminated soils, we aimed to fill the gap in our knowledge on recent contamination. <br>In order to investigate indigenous microbial community involvement in soil PAH degradation, a mesocosm trial was established. Soils from two forest systems (holm oak and black pine) were spiked with 3 PAHs (phenanthrene, pyrene and benzo[a]pyrene) and incubated under controlled conditions (T: 22 °C, R.H.: 88%). Along 360 days, structural and functional changes in soil microbial community were monitored analyzing bacterial and fungal biomass (by phospholipid fatty acid and ergosterol content) and enzyme activities (hydrolase, laccase and peroxidase).<br>Both soil types indicated a capability of indigenous native microbial community to degrade almost completely PAHs yet after one year, with phenanthrene and pyrene faster degrading than benzo[a]pyrene, according to their molecular weight. In pine soil, the PAH degradation proceeds with a minor extent likely in relation to the sequestration of PAHs in soil richer in organic matter. In both forest soils fungi are mainly involved in the degradation of PAHs, as highlighted by the increase of both content of the fungal marker and enzyme activity mainly carried out by fungi, e.g. laccase in holm oak soil. <br>Regarding the community structure, PAH contamination influences the relative abundance of several soil microbial groups yet after 4 days from contamination, when the microbial community composition shifts towards Gram+ bacteria in holm oak soil, whereas in pine soil pyrene and phenanthrene stimulate fungi and actinomycetes. In the long-term, after one year from contamination, a variation in microbial community was more evident in the holm oak soil, with an increase of fungi in the treatment with benzo[a]pyrene, and an increase of Gram+ in the treatment with phenanthrene. All the enzymes activities, after some fluctuations in the early stages of incubation, decreased after one year. During the quick and strong PAH degradation, hydrolytic activity showed high and constant values, exhibiting a stability in the long-term after the contamination. <br>The obtained findings show the role of several microbial groups in PAH natural attenuation in different forest soils. Different PAH degradation rates between systems can be attributable to soil microbiome dominated by different populations in the two investigated forest soils. The use of indigenous microorganisms in bioremediation processes can reduce the risks associated with PAH contaminated soils, and a better understanding of the effects of PAH contaminants on soil microbial community is very critical for understanding microbial activity during bioremediation. The findings highlight the importance of fungi in the potential recovery of a soil polluted by organic contaminants.</p>

Agriculture ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 445
Author(s):  
Jessica Cuartero ◽  
Onurcan Özbolat ◽  
Virginia Sánchez-Navarro ◽  
Marcos Egea-Cortines ◽  
Raúl Zornoza ◽  
...  

Long-term organic farming aims to reduce synthetic fertilizer and pesticide use in order to sustainably produce and improve soil quality. To do this, there is a need for more information about the soil microbial community, which plays a key role in a sustainable agriculture. In this paper, we assessed the long-term effects of two organic and one conventional cropping systems on the soil microbial community structure using high-throughput sequencing analysis, as well as the link between these communities and the changes in the soil properties and crop yield. The results showed that the crop yield was similar among the three cropping systems. The microbial community changed according to cropping system. Organic cultivation with manure compost and compost tea (Org_C) showed a change in the bacterial community associated with an improved soil carbon and nutrient content. A linear discriminant analysis effect size showed different bacteria and fungi as key microorganisms for each of the three different cropping systems, for conventional systems (Conv), different microorganisms such as Nesterenkonia, Galbibacter, Gramella, Limnobacter, Pseudoalteromonas, Pantoe, and Sporobolomyces were associated with pesticides, while for Org_C and organic cultivation with manure (Org_M), other types of microorganisms were associated with organic amendments with different functions, which, in some cases, reduce soil borne pathogens. However, further investigations such as functional approaches or network analyses are need to better understand the mechanisms behind this behavior.


2021 ◽  
Vol 9 (2) ◽  
pp. 211
Author(s):  
Jie Gao ◽  
Miao Liu ◽  
Sixue Shi ◽  
Ying Liu ◽  
Yu Duan ◽  
...  

In this study, we analyzed microbial community composition and the functional capacities of degraded sites and restored/natural sites in two typical wetlands of Northeast China—the Phragmites marsh and the Carex marsh, respectively. The degradation of these wetlands, caused by grazing or land drainage for irrigation, alters microbial community components and functional structures, in addition to changing the aboveground vegetation and soil geochemical properties. Bacterial and fungal diversity at the degraded sites were significantly lower than those at restored/natural sites, indicating that soil microbial groups were sensitive to disturbances in wetland ecosystems. Further, a combined analysis using high-throughput sequencing and GeoChip arrays showed that the abundance of carbon fixation and degradation, and ~95% genes involved in nitrogen cycling were increased in abundance at grazed Phragmites sites, likely due to the stimulating impact of urine and dung deposition. In contrast, the abundance of genes involved in methane cycling was significantly increased in restored wetlands. Particularly, we found that microbial composition and activity gradually shifts according to the hierarchical marsh sites. Altogether, this study demonstrated that microbial communities as a whole could respond to wetland changes and revealed the functional potential of microbes in regulating biogeochemical cycles.


2017 ◽  
Vol 93 (10) ◽  
Author(s):  
Dennis Goss-Souza ◽  
Lucas William Mendes ◽  
Clovis Daniel Borges ◽  
Dilmar Baretta ◽  
Siu Mui Tsai ◽  
...  

2021 ◽  
Author(s):  
Alin Song ◽  
Zimin Li ◽  
Fenliang Fan

<p>Returning crop straw into soil is an important practice to balance biogenic and bioavailable silicon (Si) pool in paddy, which is crucial for rice healthy growth. However, it remains elusive how straw return affects Si bioavailability, its uptake, and rice yield, owing to little knowledge about soil microbial communities responsible for straw degradation. Here, we investigated the change of soil Si fractions and microbial community in a 39-year-old paddy field amended by a long-term straw return. Results showed that rice straw-return significantly increased soil bioavailable Si and rice yield to from 29.9% to 61.6% and from 14.5% to 23.6%, respectively, compared to NPK fertilization alone. Straw return significantly altered soil microbial community abundance. Acidobacteria was positively and significantly related to amorphous Si, while Rokubacteria at the phylum level, Deltaproteobacteria and Holophagae at the class level were negatively and significantly related to organic matter adsorbed and Fe/Mn-oxide combined Si in soils. Redundancy analysis of their correlations further demonstrated that Si status significantly explained 12% of soil bacterial community variation. These findings suggest that soil bacteria community and diversity interact with Si mobility via altering its transformation, resulting in the balance of various nutrient sources to drive biological silicon cycle in agroecosystem.</p>


Sign in / Sign up

Export Citation Format

Share Document