Source Investigation of the 2018 Lombok (Indonesia) Earthquake Sequences

Author(s):  
Dimas Salomo Januarianto Sianipar ◽  
Bor-Shouh Huang ◽  
Kuo-Fong Ma ◽  
Tio Azhar Prakoso Setiadi ◽  
Ming-Che Hsieh ◽  
...  

<p>The western extension and deformation mechanism of Flores back-arc thrust in eastern Sunda-Banda Arc (Indonesia) are poorly investigated, and, thus, poorly constrained. From late July to August 2018, a sequence of large earthquakes (M6.4+) took place in the north of Lombok Island that marked the previously westernmost termination of the continuous zone of the back-arc thrusting. The 2018 Lombok earthquake sequences that began with Mw 6.4 (28 July 2018), and followed by Mw 6.9 (5 August 2018), and Mw 6.9 (19 August 2019) with massive subsequent aftershocks claimed on more than 500 casualties, nearly 500,000 people displaced and serious damages on Lombok Island. Here we relocate the aftershocks and perform the finite fault inversions of M6.4+ earthquake sequences constrained with teleseismic body and surface waves. Both refined hypocenters of aftershocks and rupture processes of large earthquakes provide detail kinematic descriptions of the source mechanisms of the sequences. The aftershocks distributions and slip model suggest that the earthquakes occurred on south-dipping low angle thrust faulting that striking to the east while it also activated aftershocks on surrounding complex shallow faulting with distinguishing distributions. The source inversions of large earthquakes over the entire of the western part of Flores back-arc thrust resulted as simple circular rupture propagations initiated from ~15 km depth for all events except the westernmost events (Mw 6.9 on 5 August 2019) that had a more complex rupture and initiated from shallower depth, and with slip distributed cross over the former identified westernmost termination of the Flores back-arc thrust. Our study suggests the further extension of back-arc thrusting and the possible structures revealed from the subsequence aftershocks. The source characterizations revealed in this study would be important for further seismic hazard analysis in this region.</p>

2020 ◽  
Author(s):  
Sezim Ezgi Guvercin ◽  
Hayrullah Karabulut ◽  
Ugur Dogan ◽  
Ziyadin Cakir ◽  
Semih Ergintav ◽  
...  

<p>The seismotectonic behavior of the Eastern Anatolia is predominantly controlled by the East Anatolian Fault (EAF). Together with the North Anatolian Fault (NAF), this ~400 km long sinistral transform fault, accommodates the westward motion of Anatolia between Anatolian and Arabian plates with a slip rate of ~10 mm/yr which is significantly slower than the motion of the NAF (25 mm/yr). Although this two major faults are similar in terms of the migration of the large earthquakes from east to west, the present seismicity of the EAF is high compared to the NAF. Except for the several earthquakes with Mw > 5, there were no devastating earthquakes during the instrumental period along the EAF. The absence of large earthquakes during the last ~50 years along the EAF indicates presence of significant seismic gaps and potential seismic hazard in the region. Recent studies indicate segmentation of the EAF with varying lengths of creeping and locked segments. Some details of the geometries and the slip rates of these segments have been estimated by the InSAR observations. Both InSAR and GPS observations indicate that the maximum creep along this the EAF is ~10 mm/yr, approximately the slip rate of the EAF.</p><p>While both geodetic data verify the existence of creep from surface deformation, its relation to the seismic behavior of the EAF is less clear. There is a ~30 km long creeping segment to the north-east of Lake Hazar which generates no significant seismicity. On the other hand, another creeping segment to the south-west of Lake Hazar, there are repeating events, below the depth of 10 km, with a horizontal extent of 15 km. The highly fractured and complex structure of this fault zone is also confirmed by the available focal mechanisms which shows significant variety.</p><p>In this study, we update seismicity catalog with improved locations to date and present a uniform and high quality focal mechanism catalog down to M4 completeness, using regional waveforms. The seismicity catalog is used to estimate the geometry of the segmentation while the novel earthquake source mechanisms are used to understand the kinematics of the segments and interactions. Moreover, we present the latest M4.9, 2019, Sivrice earthquake, pointing out a location where the stress is perturbed due to a transition from creeping segment to locked segment. (Supported by TUBITAK no: 118Y435 project)</p>


2020 ◽  
Vol 110 (3) ◽  
pp. 1064-1076 ◽  
Author(s):  
Yuxuan Chen ◽  
Mian Liu ◽  
Gang Luo

ABSTRACT Periodic or quasiperiodic earthquake recurrence on individual faults, as predicted by the elastic rebound model, is not common in nature. Instead, most earthquake sequences are complex and variable, and often show clusters of events separated by long but irregular intervals of quiescence. Such temporal patterns are especially common for large earthquakes in complex fault zones or regional and global fault networks. Mathematically described as the Devil’s Staircase, such temporal patterns are a fractal property of nonlinear complex systems, in which a change of any part (e.g., rupture of a fault or fault segment) could affect the behavior of the whole system. We found that the lengths of the quiescent intervals between clusters are inversely related to tectonic-loading rates, whereas earthquake clustering can be attributed to many factors, including earthquake-induced viscoelastic relaxation and fault interaction. Whereas the underlying causes of the characteristics of earthquake sequences are not fully known, we attempted to statistically characterize these sequences. We found that most earthquake sequences are burstier than the Poisson model commonly used in probabilistic seismic hazard analysis, implying a higher probability of repeating events soon after a large earthquake.


2021 ◽  
Vol 13 (11) ◽  
pp. 2222
Author(s):  
Sandy Budi Wibowo ◽  
Danang Sri Hadmoko ◽  
Yunus Isnaeni ◽  
Nur Mohammad Farda ◽  
Ade Febri Sandhini Putri ◽  
...  

Lombok Island in Indonesia was hit by four major earthquakes (6.4 Mw to 7 Mw) and by at least 818 earthquakes between 29 July and 31 August 2018. The aims of this study are to measure ground deformation due to the 2018 Lombok earthquake series and to map its spatio-temporal distribution. The application of DinSAR was performed to produce an interferogram and deformation map. Time series Sentinel-1 satellite imageries were used as master and slave for each of these four major earthquakes. The spatio-temporal distribution of the ground deformation was analyzed using a zonal statistics algorithm in GIS. It focused on the overlapping area between the raster layer of the deformation map and the polygon layer of six observation sites (Mataram City, Pamenang, Tampes, Sukadana, Sembalun, and Belanting). The results showed that the deformation includes uplift and subsidence. The first 6.4 Mw foreshock hitting on 29 July 2018 produces a minimum uplift effect on the island. The 7.0 Mw mainshock on 5 August 2018 causes extreme uplift at the northern shore. The 6.2 Mw Aftershock on 9 August 2018 generates subsidence throughout the study area. The final earthquake of 6.9 Mw on 19 August 2018 initiates massive uplift in the study area and extreme uplift at the northeastern shore. The highest uplift reaches 0.713 m at the northern shore, while the deepest subsidence is measured −0.338 m at the northwestern shore. Dominant deformation on the northern area of Lombok Island indicates movement of Back Arc Trust in the north of the island. The output of this study would be valuable to local authorities to evaluate existing earthquake’s impacts and to design mitigation strategies to face earthquake-induced ground displacement.


2017 ◽  
Vol 3 (4) ◽  
pp. 237-266 ◽  
Author(s):  
Ali Ghorbani ◽  
Ardavan Izadi

Statistics of human losses and financial casualties in Guilan province as one of the most populated and strategic areas in the north of Iran have doubled the importance of having knowledge about earthquake and strategies to reduce its effect. In order to investigate seismic hazard analysis, earthquake records along with selecting the proper distance of intended locations were gathered to make Poissonian catalogs. The earthquake catalogs cover the geographical area limited to 35.0°-39.3°N, 47.1-52.2°E and include around 4,000 earthquake events between the years of 855 to 2016.  An extensive amount of efforts and times are required to eliminate duplicated events, to unify the magnitude scales and to cluster the earthquake sequences with variable windows in time and location domains to remove aftershocks and foreshocks. The Final homogenous catalog consists of around 110 events for each region. Magnitude of completeness in different time intervals is reported for Guilan region. Seismicity parameters were achieved using Gutenberg-Richter method by Zmap and Kijko-Sellovell approaches for important cities of Guilan including Rasht, Anzali, Rudbar, and Lahijan. Comparative analysis of the results from Zmap and Kijko-Sellovell approaches shows good consistency in the estimation of seismic parameters with the result of literature.


2018 ◽  
Vol 195 ◽  
pp. 03018 ◽  
Author(s):  
Didi S. Agustawijaya ◽  
Heri Sulistiyono ◽  
Ikhwan Elhuda

Lombok Island is located in the Nusatenggara region, which is considered as one of the most active seismic parts of Indonesia. The determination of seismicity is crucial to the island, since Lombok Island is a relatively dense populated small island. Earthquakes that occurred around the island were generated by southern subduction mega-thrust and northern back-arc thrust. Mostly, distributions are concentrated on the north-west and south-east parts of Lombok Island. Probabilistic data analysis of 309 earthquake events during the period of 1973 - 2017 results in the Gutenberg-Richter parameters (a and b) of 3.62 and-0.53 indicating medium to high seismic activities. The Joyner-Boore attenuation relation seems to be suitable for seismic characteristics of the island. The reconstruction of tectonic setting indicates that the Benioff zone may develop at the depths of 150 km beneath the island causing horizontal tectonic forces working within the direction of N 171 °E - N 351 °E. This could create a strike-slip fault on the crustal basement within the NE - SW direction.


Geosciences ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 46
Author(s):  
Bachtiar W. Mutaqin ◽  
Franck Lavigne ◽  
Patrick Wassmer ◽  
Martine Trautmann ◽  
Puncak Joyontono ◽  
...  

Indonesia is exposed to earthquakes, volcanic activities, and associated tsunamis. This is particularly the case for Lombok and Sumbawa Islands in West Nusa Tenggara, where evidence of tsunamis is frequently observed in its coastal sedimentary record. If the 1815 CE Tambora eruption on Sumbawa Island generated a tsunami with well-identified traces on the surrounding islands, little is known about the consequences of the 1257 CE tremendous eruption of Samalas on the neighboring islands, and especially about the possible tsunamis generated in reason of a paucity of research on coastal sedimentary records in this area. However, on Lombok Island, the eruption of the Samalas volcano produced significant volumes of pyroclastic flows that entered the sea in the North and East of the island. These phenomena must have produced a tsunami that left their traces, especially on Sumbawa Island, whose western coastline is only 14 km away from Lombok’s eastern shore. Therefore, the main goal of this study is to investigate, find evidence, and determine the age of marine-origin sediments along the shore of the Alas Strait, Indonesia. We collected and analyzed samples of coral and seashells from marine deposits identified along the west coast of Sumbawa, i.e., in Belang Island and abandoned fishponds in Kiantar Village, in order to identify the sources and the occurrence period of these deposits events. Based on the radiocarbon dating of coral and seashell samples, we concluded that none of the identified marine deposits along the western coast of Sumbawa could be related chronologically to the 1257 CE eruption of Samalas. However, possible tsunami deposits located in Belang Island and abandoned fishponds in Kiantar Village yielded 4th century CE, 9th century CE, and 17th century CE. We also conclude that past large earthquakes triggered these tsunamis since no known volcanic eruption occurred near the Alas Strait at that time that may have triggered a tsunami.


2017 ◽  
Vol 50 (3) ◽  
pp. 1583
Author(s):  
V. Saltogianni ◽  
M. Gianniou ◽  
T. Taymaz ◽  
S. Yolsal-Çevikbilen ◽  
S. Stiros

A strong earthquake (Mw 6.9) on 24 May 2014 ruptured the North Aegean Trough (NAT) in Greece, west of the North Anatolian Fault Zone (NAFZ). In order to provide unbiased constrains of the rupture process and fault geometry of the earthquake, seismological and geodetic data were analyzed independently. First, based on teleseismic long-period P- and SH- waveforms a point-source solution yielded dominantly right-lateral strike-slip faulting mechanism. Furthermore, finite fault inversion of broad-band data revealed the slip history of the earthquake. Second, GPS slip vectors derived from 11 permanent GPS stations uniformly distributed around the meizoseismal area of the earthquake indicated significant horizontal coseismic slip. Inversion of GPS-derived displacements on the basis of Okada model and using the new TOPological INVersion (TOPINV) algorithm permitted to model a vertical strike slip fault, consistent with that derived from seismological data. Obtained results are consistent with the NAT structure and constrain well the fault geometry and the dynamics of the 2014 earthquake. The latter seems to fill a gap in seismicity along the NAT in the last 50 years, but seems not to have a direct relationship with the sequence of recent faulting farther east, along the NAFZ.


2010 ◽  
Vol 27 (3-4) ◽  
Author(s):  
N. N. AMBRASEYS

This paper shows t h a t given certain conditions it is perfectly feasible to study an earthquake that occurred three-quarters of a century ago in a remote part of the world. Also, it shows that there are many large earthquakes which, because of lack of interdisciplinary efforts to study such events, have remained hitherto little known or totally unknown. The case of the Silakhor earthquake revealed deficiencies in the determination of epicentres by ISS and Gutenberg; the difference between macroseismic and instrumental position for the Silakhor earthquake is 380 kilometres, a difference which lias caused a serious problem in the assessment of seisniicity of Iran. Accurate macroseismic d a t a may be used to minimize bias in t h e instrumental relocation of the larger events and to study source mechanisms. Untili this study was undertaken, the faulting associated with the Silakhor earthquake was totally unknown. Even more important t h a n the value of recent faulting for its significance in resolving ambiguities in t h e choice of the t r u e source parametres, is the information that can be gleaned from evidence for the mechanism of earthquakes that occurred long before t h e advent of modern seismology and in particular, for the pattern of recent tectonic activity.


Author(s):  
Costas Synolakis ◽  
Utku Kânoğlu

The 11 March 2011 tsunami was probably the fourth largest in the past 100 years and killed over 15 000 people. The magnitude of the design tsunami triggering earthquake affecting this region of Japan had been grossly underestimated, and the tsunami hit the Fukushima Dai-ichi nuclear power plant (NPP), causing the third most severe accident in an NPP ever. Interestingly, while the Onagawa NPP was also hit by a tsunami of approximately the same height as Dai-ichi, it survived the event ‘remarkably undamaged’. We explain what has been referred to as the cascade of engineering and regulatory failures that led to the Fukushima disaster. One, insufficient attention had been given to evidence of large tsunamis inundating the region earlier, to Japanese research suggestive that large earthquakes could occur anywhere along a subduction zone, and to new research on mega-thrusts since Boxing Day 2004. Two, there were unexplainably different design conditions for NPPs at close distances from each other. Three, the hazard analysis to calculate the maximum probable tsunami at Dai-ichi appeared to have had methodological mistakes, which almost nobody experienced in tsunami engineering would have made. Four, there were substantial inadequacies in the Japan nuclear regulatory structure. The Fukushima accident was preventable, if international best practices and standards had been followed, if there had been international reviews, and had common sense prevailed in the interpretation of pre-existing geological and hydrodynamic findings. Formal standards are needed for evaluating the tsunami vulnerability of NPPs, for specific training of engineers and scientists who perform tsunami computations for emergency preparedness or critical facilities, as well as for regulators who review safety studies.


Sign in / Sign up

Export Citation Format

Share Document