Post-eruptive volcano inflation following major magma drainage: Interplay between models of viscoelastic response influence and models of magma inflow at Bárðarbunga caldera, Iceland, 2015-2018

Author(s):  
Siqi Li ◽  
Freysteinn Sigmundsson ◽  
Vincent Drouin ◽  
Michelle M. Parks ◽  
Kristín Jónsdóttir ◽  
...  

<p>Unrest at Bárðarbunga after a caldera collapse in 2014-2015 includes elevated seismicity beginning about six months after the eruption ended, including nine Mw>4.5 earthquakes. The earthquakes occurred mostly on the northern and southern parts of a caldera ring fault. Global Navigation Satellite System (GNSS, in particular, Global Positioning System; GPS) and Interferometric Synthetic Aperture Radar (InSAR) geodesy are applied to evaluate the spatial and temporal pattern of ground deformation around Bárðarbunga caldera outside the icecap, in 2015-2018, when deformation rates were relatively steady. The aim is to study the role of viscoelastic relaxation following major magma drainage versus renewed magma inflow as an explanation for the ongoing unrest.</p><p>The largest horizontal velocity is measured at GPS station KISA (3 km from caldera rim), 141 mm/yr in direction N47<sup>o</sup>E relative to the Eurasian plate in 2015-2018. GPS and InSAR observations show that the velocities decay rapidly outward from the caldera. We correct our observations for Glacial Isostatic Adjustment and plate spreading to extract the deformation related to volcanic activity. After this correction, some GPS sites show subsidence.</p><p>We use a reference Earth model to initially evaluate the contribution of viscoelastic processes to the observed deformation field. We model the deformation within a half-space composed of a 7-km thick elastic layer on top of a viscoelastic layer with a viscosity of 5 x 10<sup>18</sup> Pa s, considering two co-eruptive contributors to the viscoelastic relaxation: “non-piston” magma withdrawal at 10 km depth (modelled as pressure drop in a spherical source) and caldera collapse (modelled as surface unloading). The other model we test is the magma inflow in an elastic half-space. Both the viscoelastic relaxation and magma inflow create horizontal outward movements around the caldera, and uplift at the surface projection of the source center in 2015-2018. Viscoelastic response due to magma withdrawal results in subsidence in the area outside the icecap. Magma inflow creates rapid surface velocity decay as observed.</p><p>We explore further two parameters in the viscoelastic reference model: the viscosity and the "non-piston" magma withdrawal volume. Our comparison between the corrected InSAR velocities and viscoelastic models suggests a viscosity of 2.6×10<sup>18</sup> Pa s and 0.36 km<sup>3</sup> of “non-piston” magma withdrawal volume, given by the optimal reduced Chi-squared statistic. When the deformation is explained using only magma inflow into a single spherical source (and no viscoelastic response), the optimal model suggests an inflow rate at 1×10<sup>7</sup> m<sup>3</sup>/yr at 700 m depth. A magma inflow model with more model parameters is also a possible explanation, including sill inflation at 10 km together with slip on caldera ring faults. Our reference Earth model and the two end-member models suggest that there is a trade-off between the viscoelastic relaxation and the magma inflow, since they produce similar deformation signals outside the icecap. However, to reproduce details of the observed deformation, both processes are required. A viscoelastic-only model cannot fully explain the fast velocity decay away from the caldera, whereas a magma inflow-only model cannot explain the subsidence observed at several locations.</p>

1999 ◽  
Vol 42 (3) ◽  
Author(s):  
S. M. Petrazzuoli ◽  
C. Troise ◽  
F. Pingue ◽  
G. De Natale

We present here a model which explains the mechanism of generation of unrest episodes at Campi Flegrei caldera from a mechanical point of view. The mechanism involves the effects of plastic zones at the borders of the inner collapsed area on both static deformations and seismicity. The large amount of ground uplift observed necessarily calls for plastic effects. These effects are interpreted as concentrated at the caldera borders: the generation of such plastic zones is simulated in terms of the mechanisms leading to the caldera collapse. In order to simulate the influence of such plastic zones on both ground deformations and seismicity we model them as surfaces of discontinuities free from shear stress within an elastic homogeneous half-space. The presence of such discontinuities allows the inner caldera block to move differentially from the outer areas, by slip along the plastic bordering zones. Such a differential uplift of the central block causes the concentration of the ground deformation. Our model explains a lot of puzzling observations at Campi Flegrei in terms of the effects of the caldera structure. The model is applicable to other caldera areas, which show typical evidence for the effects of such discontinuity zones, during unrest episodes.


2021 ◽  
pp. 1-13
Author(s):  
Iben Koldtoft ◽  
Aslak Grinsted ◽  
Bo M. Vinther ◽  
Christine S. Hvidberg

Abstract To assess the amount of ice volume stored in glaciers or ice caps, a method to estimate ice thickness distribution is required for glaciers where no direct observations are available. In this study, we use an existing inverse method to estimate the bedrock topography and ice thickness of the Renland Ice Cap, East Greenland, using satellite-based observations of the surface topography. The inverse approach involves a procedure in which an ice dynamical model is used to build-up an ice cap in steady state with climate forcing from a regional climate model, and the bedrock is iteratively adjusted until the modelled and observed surface topography match. We validate our model results against information from airborne radar data and satellite observed surface velocity, and we find that the inferred ice thickness and thereby the stored total volume of the ice cap is sensitive to the assumed ice softness and basal slipperiness. The best basal model parameters for the Renland Ice Cap are determined and the best estimated total ice volume of 384 km3 is found. The Renland Ice Cap is particularly interesting because of its location at a high elevation plateau and hence assumed low sensitivity to climate change.


Author(s):  
Deval Pandya ◽  
Brian Dennis ◽  
Ronnie Russell

In recent years, the study of flow-induced erosion phenomena has gained interest as erosion has a direct influence on the life, reliability and safety of equipment. Particularly significant erosion can occur inside the drilling tool components caused by the low particle loading (<10%) in the drilling fluid. Due to the difficulty and cost of conducting experiments, significant efforts have been invested in numerical predictive tools to understand and mitigate erosion within drilling tools. Computational fluid dynamics (CFD) is becoming a powerful tool to predict complex flow-erosion and a cost-effective method to re-design drilling equipment for mitigating erosion. Existing CFD-based erosion models predict erosion regions fairly accurately, but these models have poor reliability when it comes to quantitative predictions. In many cases, the error can be greater than an order of magnitude. The present study focuses on development of an improved CFD-erosion model for predicting the qualitative as well as the quantitative aspects of erosion. A finite-volume based CFD-erosion model was developed using a commercially available CFD code. The CFD model involves fluid flow and turbulence modeling, particle tracking, and application of existing empirical erosion models. All parameters like surface velocity, particle concentration, particle volume fraction, etc., used in empirical erosion equations are obtained through CFD analysis. CFD modeling parameters like numerical schemes, turbulence models, near-wall treatments, grid strategy and discrete particle model parameters were investigated in detail to develop guidelines for erosion prediction. As part of this effort, the effect of computed results showed good qualitative and quantitative agreement for the benchmark case of flow through an elbow at different flow rates and particle sizes. This paper proposes a new/modified erosion model. The combination of an improved CFD methodology and a new erosion model provides a novel computational approach that accurately predicts the location and magnitude of erosion. Reliable predictive methodology can help improve designs of downhole equipment to mitigate erosion risk as well as provide guidance on repair and maintenance intervals. This will eventually lead to improvement in the reliability and safety of downhole tool operation.


2018 ◽  
Vol 15 (07) ◽  
pp. 1850066 ◽  
Author(s):  
Meijuan Xu ◽  
Pengpeng Ni ◽  
Guoxiong Mei ◽  
Yanlin Zhao

The behavior of pile composite foundation is studied using the flexibility method. During the analysis, determination of the flexibility matrix (settlement) is critical. However, conventional methods of Winkler and elastic half-space foundation models are incapable of considering the time effects of soil consolidation and creep. The foundation model of Zaretsky and Tsytovich [1965] can be used to evaluate settlement for unsaturated soils, but the complexity of numerical integration over an arbitrary loading area hinders its application. In this paper, a novel scheme is proposed for numerical integration by rotating the loading surface using the equiareal transformation technique. Therefore, a simplified closed-form solution is developed to calculate time dependent settlement for foundation soils. The efficacy of the proposed technique is demonstrated using illustrative examples of an elastic half-space, a rigid raft foundation without piles, and rigid pile composite foundations with multiple piles under surface loading. Furthermore, parametric study is conducted to evaluate the sensitivity of model parameters. The permeability [Formula: see text] and Poisson’s ratio [Formula: see text] are found to be important, whereas pore pressure coefficient [Formula: see text] and degree of saturation [Formula: see text] are less significant in the calculation.


1973 ◽  
Vol 63 (6-1) ◽  
pp. 2145-2154
Author(s):  
Martin Rosenman ◽  
Sarva Jit Singh

Abstract Expressions for quasi-static surface stresses resulting from a finite, rectangular, vertical, strike-slip fault in a Maxwellian viscoelastic half-space are derived. Variation of the stresses with time and epicentral distance is studied. Contour maps are obtained in some representative cases. It is found that all nonvanishing stress components at the free surface die exponentially with time. This is in contrast to the behavior of the displacements and strains which, in general, do not vanish for large times.


2020 ◽  
Vol 91 (5) ◽  
pp. 2872-2880 ◽  
Author(s):  
Felix Bernauer ◽  
Joachim Wassermann ◽  
Heiner Igel

Abstract Inertial sensors like seismometers or accelerometers are sensitive to tilt motions. In general, from pure acceleration measurements, it is not possible to separate the tilt acceleration from the translational ground acceleration. This can lead to severe misinterpretation of seismograms. Here, we present three different methods that can help solving this problem by correcting translational records for dynamic tilt induced by ground deformation with direct measurements of rotational motions: (1) a simple time-domain method, (2) a frequency-domain method proposed by Crawford and Webb (2000) using a coherence-weighted transfer function between rotation and acceleration, and (3) an adapted frequency-domain method that corrects only those parts of the spectrum with coherence between translational acceleration and rotation angle higher than 0.5. These three methods are discussed in three different experimental settings: (1) a reproducible and precisely known laboratory test using a high-precision tilt table, (2) a synthetic test with a simulated volcanic very-long-period event, and (3) a real data set recorded during the 2018 Mt. Kīlauea caldera collapse. All the three test cases show severe influence of tilt motion on the acceleration measurements. The time-domain method and the adapted frequency-domain method show very similar performance in all three test cases. Those two methods are able to remove the tilt component reliably from the acceleration record.


1989 ◽  
Vol 8 ◽  
pp. 657-661
Author(s):  
O. Bendinelli ◽  
G. Parmeggiani ◽  
F. Zavatti

AbstractThe observed light distribution in long exposure star images (PSF) may be fitted equally well by a variety of models. But dealing with undersainpled star images, only the use of the multi-Gaussian model allows the correct model parameters estimation, taking into account integration on pixel surface, image off-centering and background behaviour. It is also shown that the convolution of a spherical source with the multi-Gaussian and Moffat’s models gives in practice the same result.


2019 ◽  
Vol 7 (5) ◽  
pp. 157 ◽  
Author(s):  
Lei Ren ◽  
Jianming Miao ◽  
Yulong Li ◽  
Xiangxin Luo ◽  
Junxue Li ◽  
...  

In order to obtain forward states of coastal currents, numerical models are a commonly used approach. However, the accurate definition of initial conditions, boundary conditions and other model parameters are challenging. In this paper, a novel application of a soft computing approach, random forests (RF), was adopted to estimate surface currents for three analysis points in Galway Bay, Ireland. Outputs from a numerical model and observations from a high frequency radar system were used as inputs to develop soft computing models. The input variable structure of soft computing models was examined in detail through sensitivity experiments. High correlation of surface currents between predictions from RF models and radar data indicated that the RF algorithm is a most promising means of generating satisfactory surface currents over a long prediction period. Furthermore, training dataset lengths were examined to investigate influences on prediction accuracy. The largest improvement for zonal and meridional surface velocity components over a 59-h forecasting period was 14% and 37% of root mean square error (RMSE) values separately. Results indicate that the combination of RF models with a numerical model can significantly improve forecasting accuracy for surface currents, especially for the meridional surface velocity component.


2004 ◽  
Vol 11 (5-6) ◽  
pp. 625-635 ◽  
Author(s):  
Seyyed M. Hasheminejad ◽  
Mahdi Azarpeyvand

Radiation of sound from a spherical source, vibrating with an arbitrary, axisymmetric, time-harmonic surface velocity, while positioned within an acoustic quarterspace is analyzed in an exact manner. The formulation utilizes the appropriate wave field expansions along with the translational addition theorem for spherical wave functions in combination with the classical method of images to develop a closed-form solution in form of infinite series. The analytical results are illustrated with numerical examples in which the spherical source, vibrating in the pulsating (n= 0) and translational oscillating (n= 1) modes, is positioned near the rigid boundary of a water-filled quarterspace. Subsequently, the basic acoustic field quantities such as the modal acoustic radiation impedance load and the radiation intensity distribution are evaluated for representative values of the parameters characterizing the system.


Sign in / Sign up

Export Citation Format

Share Document