Black Carbon profiles from tethered balloon flights over the Southeastern Tibetan Plateau

Author(s):  
Mo Wang ◽  
Baiqing Xu ◽  
Song Yang ◽  
Jing Gao ◽  
Taihua Zhang ◽  
...  

<p>Black carbon (BC) can change the energy budget of the earth system by strongly absorbing solar radiation: both suspended in the atmosphere, incorporated into cloud droplets, or deposited onto high-albedo surfaces. BC’s direct radiative forcing is highly dependent on its vertical distribution. However, due to large variabilities and the small number of vertical profile measurements, there is still large uncertainty in this forcing value. Moreover, the vertical profile of BC and its relative elevation to clouds determine BC’s lifetime in the atmosphere and its transport and removal processes. In November-December 2017, a series of tethered balloon flights was launched at the Southeast Tibet Observation and Research Station for the Alpine Environment of the Chinese Academy of Sciences. A cylindrical balloon with a diameter of 7.9 m and maximum volume of 1250 m<sup>3</sup> was used. A 7-channel Aethalometer was installed in the gondola attached to the balloon, together with several other instruments including a GPS for altitude, and sensors for temperature and relative humidity. The airborne Aethalometer measured BC mass concentration (ng/m<sup>3</sup>) on a on a 1-second timebase at 7 wavelengths ranging from 370 nm to 950 nm. Meanwhile, another Aethalometer was used to monitor BC mass concentration near the surface, at a height of about 10 m above the ground. From the tethered balloon flights, we derived three profiles designated as ‘F1’, ‘F3-ASC’, and ‘F3-DES’. The maximum height for the F1 flight was 500 m a.g.l., namely 3800 m a.s.l.; while the maximum height for the F3 flight was 1950 m a.g.l., namely 5250 m a.s.l. Based on the potential temperature and relative humidity data, the profiles were divided into three layers: the stable boundary layer (SBL), the residual layer (RL), and the free troposphere (FT). The vertical distribution of BC shows a prominent peak within the SBL. The mean BC concentration in SBL (1000±750 ng/m<sup>3</sup>) was one order of magnitude higher than in RL and FT, which were 140±40 ng/m<sup>3</sup> and 120±40 ng/m<sup>3</sup>, respectively. The BC concentration measured in the present study in FT over the southeastern Tibetan Plateau is comparable to measurements in Arctic regions, but lower than values in South Asia. Analysis of the wavelength dependence of the data yields an estimate of the biomass burning contribution. This showed a maximum value in SBL of 44±37%, and was 16±6% in RL and 13±5% in FT. Analysis of 24-hour isentropic back trajectories showed that BC in SBL and RL was dominated by local sources, while in the FT, BC is mainly influenced by mid- to long-distant transport by the westerlies. In addition, analysis of the variations of BC concentration and biomass burning contribution on a high-resolution time scale showed that BC concentrations and the nature of their sources are largely influenced by air mass origins and transport. To our knowledge, this is the first ever in situ measurement of BC concentration over the Tibetan Plateau in the atmospheric boundary layer and free troposphere up to 5000 m a.s.l.</p>

2017 ◽  
Author(s):  
Lisa K. Behrens ◽  
Andreas Hilboll ◽  
Andreas Richter ◽  
Enno Peters ◽  
Henk Eskes ◽  
...  

Abstract. In this study, we present a novel NO2 DOAS retrieval in the ultraviolet (UV) spectral range for satellite observations from the Global Ozone Monitoring Instrument 2 on board EUMETSAT’s MetOp-A (GOME-2A) satellite. We compare the results to those from an established NO2 retrieval in the visible (vis) spectral range from the same instrument and infer information about the NO2 vertical profile shape in the troposphere. As expected, radiative transfer calculations for satellite geometries show that the sensitivity close to the ground is higher in the vis than in the UV spectral range. Consequently, NO2 slant column densities (SCDs) in the vis are usually higher than in the UV, if the NO2 is close to the surface. Therefore, these differences in NO2 SCDs between the two spectral ranges contain information on the vertical distribution of NO2 in the troposphere. We combine these results with radiative transfer calculations and simulated NO2 fields from the TM5 chemistry transport model to evaluate the simulated NO2 vertical distribution. We investigate regions representative for both anthropogenic and biomass burning NO2 pollution. Anthropogenic air pollution is mostly located in the boundary layer close to the surface, which is reflected by the large differences between UV and vis SCDs of ~ 60 %. Biomass burning NO2 in contrast is often uplifted into elevated layers above the boundary layer. This is best seen in tropical Africa south of the equator, where the biomass burning NO2 is well observed in the UV, and the difference between the two spectral ranges is only ~ 36 %. In tropical Africa north of the equator, however, the biomass burning NO2 is located closer to the ground, reducing its visibility. While not enabling a full retrieval of the vertical NO2 profile shape in the troposphere, our results can help to constrain the vertical profile of NO2 in the lower troposphere and, when analyzed together with simulated NO2 fields, can help interpret the model output.


2016 ◽  
Vol 16 (6) ◽  
pp. 4135-4146 ◽  
Author(s):  
Andreas Weigelt ◽  
Ralf Ebinghaus ◽  
Nicola Pirrone ◽  
Johannes Bieser ◽  
Jan Bödewadt ◽  
...  

Abstract. The knowledge of the vertical distribution of atmospheric mercury (Hg) plays an important role in determining the transport and cycling of mercury. However, measurements of the vertical distribution are rare, because airborne measurements are expensive and labour intensive. Consequently, only a few vertical Hg profile measurements have been reported since the 1970s. Besides the Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container (CARIBIC) observations, the latest vertical profile over Europe was measured in 1996. Within the Global Mercury Observation System (GMOS) project, four vertical profiles were taken on board research aircraft (CASA-212) in August 2013 in background air over different locations in Slovenia and Germany. Each vertical profile consists of at least seven 5 min horizontal flight sections from 500 m above ground to 3000 m a.s.l. Gaseous elemental mercury (GEM) and total gaseous mercury (TGM) were measured with Tekran 2537X and Tekran 2537B analysers. In addition to the mercury measurements, SO2, CO, O3, NO, and NO2, basic meteorological parameters (pressure, temperature, relative humidity) have been measured. Additional ground-based mercury measurements at the GMOS master site in Waldhof, Germany and measurements onboard the CARIBIC passenger aircraft were used to extend the profile to the ground and upper troposphere respectively. No vertical gradient was found inside the well-mixed boundary layer (variation of less than 0.1 ng m−3) at different sites, with GEM varying from location to location between 1.4 and 1.6 ng m−3 (standard temperature and pressure, STP: T  =  273.15 K, p  =  1013.25 hPa). At all locations GEM dropped to 1.3 ng m−3 (STP) when entering the free troposphere and remained constant at higher altitudes. The combination of the vertical profile, measured on 21 August 2013 over Leipzig, Germany, with the CARIBIC measurements during ascent and descent to Frankfurt Airport, Germany, taken at approximately the same time, provide a unique central European vertical profile from inside the boundary layer (550 m a.s.l) to the upper free troposphere (10 500 m a.s.l.) and show a fairly constant free-tropospheric TGM concentration of 1.3 ng m−3 (STP).


2021 ◽  
Vol 34 (10) ◽  
pp. 4043-4068
Author(s):  
Liming Zhou ◽  
Yuhong Tian ◽  
Nan Wei ◽  
Shu-peng Ho ◽  
Jing Li

AbstractTurbulent mixing in the planetary boundary layer (PBL) governs the vertical exchange of heat, moisture, momentum, trace gases, and aerosols in the surface–atmosphere interface. The PBL height (PBLH) represents the maximum height of the free atmosphere that is directly influenced by Earth’s surface. This study uses a multidata synthesis approach from an ensemble of multiple global datasets of radiosonde observations, reanalysis products, and climate model simulations to examine the spatial patterns of long-term PBLH trends over land between 60°S and 60°N for the period 1979–2019. By considering both the sign and statistical significance of trends, we identify large-scale regions where the change signal is robust and consistent to increase our confidence in the obtained results. Despite differences in the magnitude and sign of PBLH trends over many areas, all datasets reveal a consensus on increasing PBLH over the enormous and very dry Sahara Desert and Arabian Peninsula (SDAP) and declining PBLH in India. At the global scale, the changes in PBLH are significantly correlated positively with the changes in surface heating and negatively with the changes in surface moisture, consistent with theory and previous findings in the literature. The rising PBLH is in good agreement with increasing sensible heat and surface temperature and decreasing relative humidity over the SDAP associated with desert amplification, while the declining PBLH resonates well with increasing relative humidity and latent heat and decreasing sensible heat and surface warming in India. The PBLH changes agree with radiosonde soundings over the SDAP but cannot be validated over India due to lack of good-quality radiosonde observations.


2019 ◽  
Vol 19 (9) ◽  
pp. 5771-5790 ◽  
Author(s):  
Eoghan Darbyshire ◽  
William T. Morgan ◽  
James D. Allan ◽  
Dantong Liu ◽  
Michael J. Flynn ◽  
...  

Abstract. We examine processes driving the vertical distribution of biomass burning pollution following an integrated analysis of over 200 pollutant and meteorological profiles measured in situ during the South AMerican Biomass Burning Analysis (SAMBBA) field experiment. This study will aid future work examining the impact of biomass burning on weather, climate and air quality. During the dry season there were significant contrasts in the composition and vertical distribution of haze between western and eastern regions of tropical South America. Owing to an active or residual convective mixing layer, the aerosol abundance was similar from the surface to ∼1.5 km in the west and ∼3 km in the east. Black carbon mass loadings were double as much in the east (1.7 µg m−3) than the west (0.85 µg m−3), but aerosol scattering coefficients at 550 nm were similar (∼120 Mm−1), as too were CO near-surface concentrations (310–340 ppb). We attribute these contrasts to the more flaming combustion of Cerrado fires in the east and more smouldering combustion of deforestation and pasture fires in the west. Horizontal wind shear was important in inhibiting mixed layer growth and plume rise, in addition to advecting pollutants from the Cerrado regions into the remote tropical forest of central Amazonia. Thin layers above the mixing layer indicate the roles of both plume injection and shallow moist convection in delivering pollution to the lower free troposphere. However, detrainment of large smoke plumes into the upper free troposphere was very infrequently observed. Our results reiterate that thermodynamics control the pollutant vertical distribution and thus point to the need for correct model representation so that the spatial distribution and vertical structure of biomass burning smoke is captured. We observed an increase of aerosol abundance relative to CO with altitude both in the background haze and plume enhancement ratios. It is unlikely associated with thermodynamic partitioning, aerosol deposition or local non-fire sources. We speculate it may be linked to long-range transport from West Africa or fire combustion efficiency coupled to plume injection height. Further enquiry is required to explain the phenomenon and explore impacts on regional climate and air quality.


2019 ◽  
Vol 19 (3) ◽  
pp. 1685-1702 ◽  
Author(s):  
Laura Gonzalez-Alonso ◽  
Maria Val Martin ◽  
Ralph A. Kahn

Abstract. We characterise the vertical distribution of biomass-burning emissions across the Amazon during the biomass-burning season (July–November) with an extensive climatology of smoke plumes derived from MISR and MODIS (2005–2012) and CALIOP (2006–2012) observations. Smoke plume heights exhibit substantial variability, spanning a few hundred metres up to 6 km above the terrain. However, the majority of the smoke is located at altitudes below 2.5 km. About 60 % of smoke plumes are observed in drought years, 40 %–50 % at the peak month of the burning season (September) and 94 % over tropical forest and savanna regions, with respect to the total number of smoke plume observations. At the time of the MISR observations (10:00–11:00 LT), the highest plumes are detected over grassland fires (with an averaged maximum plume height of ∼1100 m) and the lowest plumes occur over tropical forest fires (∼800 m). A similar pattern is found later in the day (14:00–15:00 LT) with CALIOP, although at higher altitudes (2300 m grassland vs. 2000 m tropical forest), as CALIOP typically detects smoke at higher altitudes due to its later overpass time, associated with a deeper planetary boundary layer, possibly more energetic fires, and greater sensitivity to thin aerosol layers. On average, 3 %–20 % of the fires inject smoke into the free troposphere; this percentage tends to increase toward the end of the burning season (November: 15 %–40 %). We find a well-defined seasonal cycle between MISR plume heights, MODIS fire radiative power and atmospheric stability across the main biomes of the Amazon, with higher smoke plumes, more intense fires and reduced atmospheric stability conditions toward the end of the burning season. Lower smoke plume heights are detected during drought (800 m) compared to non-drought (1100 m) conditions, in particular over tropical forest and savanna fires. Drought conditions favour understory fires over tropical forest, which tend to produce smouldering combustion and low smoke injection heights. Droughts also seem to favour deeper boundary layers and the percentage of smoke plumes that reach the free troposphere is lower during these dry conditions. Consistent with previous studies, the MISR mid-visible aerosol optical depth demonstrates that smoke makes a significant contribution to the total aerosol loading over the Amazon, which in combination with lower injection heights in drought periods has important implications for air quality. This work highlights the importance of biome type, fire properties and atmospheric and drought conditions for plume dynamics and smoke loading. In addition, our study demonstrates the value of combining observations of MISR and CALIOP constraints on the vertical distribution of smoke from biomass burning over the Amazon.


2018 ◽  
Vol 11 (5) ◽  
pp. 2769-2795 ◽  
Author(s):  
Lisa K. Behrens ◽  
Andreas Hilboll ◽  
Andreas Richter ◽  
Enno Peters ◽  
Henk Eskes ◽  
...  

Abstract. In this study, we present a novel nitrogen dioxide (NO2) differential optical absorption spectroscopy (DOAS) retrieval in the ultraviolet (UV) spectral range for observations from the Global Ozone Monitoring Instrument 2 on board EUMETSAT's MetOp-A (GOME-2A) satellite. We compare the results to those from an established NO2 retrieval in the visible (vis) spectral range from the same instrument and investigate how differences between the two are linked to the NO2 vertical profile shape in the troposphere.As expected, radiative transfer calculations for satellite geometries show that the sensitivity close to the ground is higher in the vis than in the UV spectral range. Consequently, NO2 slant column densities (SCDs) in the vis are usually higher than in the UV if the NO2 is close to the surface. Therefore, these differences in NO2 SCDs between the two spectral ranges contain information on the vertical distribution of NO2 in the troposphere. We combine these results with radiative transfer calculations and simulated NO2 fields from the TM5-MP chemistry transport model to evaluate the simulated NO2 vertical distribution.We investigate regions representative of both anthropogenic and biomass burning NO2 pollution. Anthropogenic air pollution is mostly located in the boundary layer close to the surface, which is reflected by large differences between UV and vis SCDs of  ∼  60 %. Biomass burning NO2 in contrast is often uplifted into elevated layers above the boundary layer. This is best seen in tropical Africa south of the Equator, where the biomass burning NO2 is well observed in the UV, and the SCD difference between the two spectral ranges is only  ∼  36 %. In tropical Africa north of the Equator, however, the biomass burning NO2 is located closer to the ground, reducing its visibility in the UV.While not enabling a full retrieval of the vertical NO2 profile shape in the troposphere, our results can help to constrain the vertical profile of NO2 in the lower troposphere and, when analysed together with simulated NO2 fields, can help to better interpret the model output.


2006 ◽  
Vol 6 (10) ◽  
pp. 2911-2925 ◽  
Author(s):  
D. Chand ◽  
P. Guyon ◽  
P. Artaxo ◽  
O. Schmid ◽  
G. P. Frank ◽  
...  

Abstract. As part of the Large Scale Biosphere-Atmosphere Experiment in Amazonia – Smoke, Aerosols, Clouds, Rainfall and Climate (LBA-SMOCC) campaign, detailed surface and airborne aerosol measurements were performed over the Amazon Basin during the dry to wet season from 16 September to 14 November 2002. Optical and physical properties of aerosols at the surface, and in the boundary layer (BL) and free troposphere (FT) during the dry season are discussed in this article. Carbon monoxide (CO) is used as a tracer for biomass burning emissions. At the surface, good correlation among the light scattering coefficient (σs at 545 nm), PM2.5, and CO indicates that biomass burning is the main source of aerosols. Accumulation of haze during some of the large-scale biomass burning events led to high PM2.5 (225 μg m−3), σs (1435 Mm−1), aerosol optical depth at 500 nm (3.0), and CO (3000 ppb). A few rainy episodes reduced the PM2.5, number concentration (CN) and CO concentration by two orders of magnitude. The correlation analysis between σs and aerosol optical thickness shows that most of the optically active aerosols are confined to a layer with a scale height of 1617 m during the burning season. This is confirmed by aircraft profiles. The average mass scattering and absorption efficiencies (545 nm) for small particles (diameter Dp<1.5 μm) at surface level are found to be 5.0 and 0.33 m2 g−1, respectively, when relating the aerosol optical properties to PM2.5 aerosols. The observed mean single scattering albedo (ωo at 545 nm) for submicron aerosols at the surface is 0.92±0.02. The light scattering by particles (Δσs/Δ CN) increase 2–10 times from the surface to the FT, most probably due to the combined affects of coagulation and condensation.


2018 ◽  
Vol 176 ◽  
pp. 05025 ◽  
Author(s):  
Michail Mytilinaios ◽  
Alexandros Papayannis ◽  
Georgios Tsaknakis

A compact ozone differential absorption lidar (DIAL) was implemented at the Laboratory of Laser Remote Sensing of the National Technical University of Athens (NTUA), in Athens, Greece. The DIAL system is based on a Nd:YAG laser emitting at 266 nm. A high-pressure Raman cell, filled with D2, was used to generate the λON and λOFF laser wavelength pairs (i.e., 266-289 nm and 289-316 nm, respectively) based on the Stimulated Raman Scattering (SRS) effect. The system was run during daytime and nighttime conditions to obtain the vertical profile of tropospheric ozone in the Planetary Boundary Layer (PBL) and the adjacent free troposphere.


2005 ◽  
Vol 5 (4) ◽  
pp. 4373-4406 ◽  
Author(s):  
D. Chand ◽  
P. Guyon ◽  
P. Artaxo ◽  
O. Schmid ◽  
G. P. Frank ◽  
...  

Abstract. As part of the Large Scale Biosphere-Atmosphere Experiment in Amazonia – Smoke, Aerosols, Clouds, Rainfall and Climate (LBA-SMOCC) campaign, detailed surface and airborne aerosol measurements were performed over the Amazon Basin during the dry to wet season from 16 September to 14 November 2002. Optical and physical properties of aerosols at the surface, boundary layer (BL) and free troposphere (FT) during the dry season are discussed in this article. Carbon monoxide (CO) is used as a tracer for biomass burning emissions. At the surface, good correlation among the light scattering coefficient (σs at 550 nm), PM2.5, and CO indicates that biomass burning is the main source of aerosols. Accumulation of haze during some of the large-scale biomass burning events led to high mass loadings (PM2.5=200 µgm−3), σs (1400 Mm−1), aerosol optical depth at 500 nm (3.0), and CO (3000 ppb). A few rainy episodes reduced the aerosol mass loading, number concentration (CN) and CO concentration by two orders of magnitude. The correlation analysis between σs and aerosol optical thickness shows that most of the optically active aerosols are confined to a layer with a scale height of 1660 m during the burning season. The average mass scattering and absorption efficiencies (532 nm) for small particles (diameter Dp<1.5 µm) at surface level are found to be 5.3 and 0.42 m2 g−1, respectively, when relating the aerosol optical properties to PM2.5 aerosols. The observed mean single scattering albedo (ωo at ~540 nm) for submicron aerosols at the surface (0.92±0.02) is significantly higher than reported previously. The scattering efficiency (dσs/dCN) of particles increases 2–10 times from the surface to the FT, most probably due to the combined affects of coagulation and condensation.


2010 ◽  
Vol 10 (6) ◽  
pp. 15167-15196
Author(s):  
J. R. Spackman ◽  
R. S. Gao ◽  
W. D. Neff ◽  
J. P. Schwarz ◽  
L. A. Watts ◽  
...  

Abstract. Understanding the processes controlling black carbon (BC) in the Arctic is crucial for evaluating the impact of anthropogenic and natural sources of BC on Arctic climate. Vertical profiles of BC mass were observed from the surface to near 7-km altitude in April 2008 using a Single-Particle Soot Photometer (SP2) during flights on the NOAA WP-3D research aircraft from Fairbanks, Alaska. These measurements were conducted during the NOAA-sponsored Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC) project as part of POLARCAT, an International Polar Year (IPY) activity. In the free troposphere, the Arctic air mass was influenced by long-range transport from biomass-burning and anthropogenic source regions at lower latitudes especially during the latter part of the campaign. Maximum average BC mass loadings of 150 ng kg−1 were observed near 5.5-km altitude in the aged Arctic air mass. In biomass-burning plumes, BC was enhanced from near the top of the Arctic boundary layer (ABL) to 5.5 km compared to the aged Arctic air mass. At the bottom of some of the profiles, positive vertical gradients in BC were observed in the vicinity of open leads in the sea-ice. BC mass loadings increased by about a factor of two across the boundary layer transition in the ABL in these cases while carbon monoxide (CO) remained constant, evidence for depletion of BC in the ABL. BC mass loadings were positively correlated with O3 in ozone depletion events (ODEs) for all the observations in the ABL suggesting that BC was removed by dry deposition of BC on the snow or ice because molecular bromine, Br2, which photolyzes and catalytically destroys O3, is thought to be released near the open leads in regions of ice formation. We estimate the deposition flux of BC mass to the snow using a box model constrained by the vertical profiles of BC in the ABL. The open leads may increase vertical mixing in the ABL and entrainment of pollution from the free troposphere possibly enhancing the deposition of BC to the snow.


Sign in / Sign up

Export Citation Format

Share Document