The Identification of Hydrological Threshold Variables

Author(s):  
Arturs Veinbergs ◽  
Ainis Lagzdins

<p>The threshold groundwater levels limiting the drainage depth and tile drain runoff as well as runoff recession and runoff partitioning are case-specific.  These are the characteristics that are usually necessary for setting up and calibration processes for such models as HYPE (Lindström et al. 2010) and SWAT (Neitsch et al. 2002).  </p><p>The objective of the present study is to identify the thresholds of groundwater levels and runoff rates that limit the formations of such runoff components as base flow and tile drain runoff. This study utilizes the data that represents the daily runoff measurements in open ditch with such characteristics as total length 2.4 km, basin area 368 ha, loamy soils, agricultural lands with subsurface drainage systems installed in 98% of the area, average tile depth 1.2m below ground surface.</p><p>The runoff components were partly separated from the daily runoff hydrographs through the analysis of storm runoff recession gradients (eq.1) and groundwater level fluctuations during the period from 2006. to 2015. Baseflow and tile drain runoff ware calculated as beeing linearly dependent on daily groundwater level fluctuations (eq.2).</p><p>  R<sub>ci</sub>=Q<sub>i+1</sub>/Q<sub>i</sub>,     (1)</p><p>Q<sub>x</sub>=f<sub>x</sub>(GWT)=a<sub>x</sub>*GWT+b<sub>x</sub> ,      (2)</p><p>Where: R<sub>ci</sub> – recession gradient; Q<sub>i </sub>and Q<sub>i+1</sub>– runoff of day i and i+1 respectively;  Q<sub>x</sub> – runoff component; GWT– groundwater level; a<sub>x </sub>and b<sub>x</sub>– slope and intercept of a linear function.</p><p>Nash-Sutcliffe efficiency (NSE) and percent bias (PBIAS) were used for comparison of calculated and separated runoff components.</p><p>The results indicate a decrease in drainage intensity and reduction in specific yield during the study period. The groundwater level of 1.18m below ground surface limit the existence of the tile drain runoff, that, furthermore,  is similar for rising and falling groundwater level. The results reveal that runoff could be contributed by 35%, 57% and 8% of baseflow, tile drain runoff and surface runoff respectively.</p>

2021 ◽  
Author(s):  
Mehdi Darvishi ◽  
Fernando Jaramillo

<p>In the recent years, southern Sweden has experienced drought conditions during the summer with potential risks of groundwater shortages. One of the main physical effects of groundwater depletion is land subsidence, a geohazard that potentially damages urban infrastructure, natural resources and can generate casualties. We here investigate land subsidence induced by groundwater depletion and/or seasonal variations in Gotland, an agricultural island in the Baltic Sea experiencing recent hydrological droughts in the summer. Taking advantage of the multiple monitoring groundwater wells active on the island, we explore the existence of a relationship between groundwater fluctuations and ground deformation, as obtained from Interferometric Synthetic Aperture Radar (InSAR). The aim in the long-term is to develop a high-accuracy map of land subsidence with an appropriate temporal and spatial resolution to understand groundwater changes in the area are recognize hydroclimatic and anthropogenic drivers of change.</p><p>We processed Sentinel-1 (S1) data, covering the time span of 2016-2019, by using the Small BAseline Subset (SBAS) to process 119 S1-A/B data (descending mode). The groundwater level of Nineteen wells distributed over the Gotland island were used to assess the relationship between groundwater depletion and the detected InSAR displacement. In addition to that, the roles of other geological key factors such as soil depth, ground capacity in bed rock, karstification, structure of bedrock and soil type in occurring land subsidence also investigated. The findings showed that the groundwater level in thirteen wells with soil depths of less than 5 meters correlated well with InSAR displacements. The closeness of bedrock to ground surface (small soil depth) was responsible for high coherence values near the wells, and enabled the detection land subsidence. The results demonstrated that InSAR could use as an effective monitoring system for groundwater management and can assist in predicting or estimating low groundwater levels during summer conditions.</p>


2021 ◽  
Author(s):  
Yogi Suardiwerianto ◽  
Sofyan Kurnianto ◽  
Adibtya Asyhari ◽  
Tubagus Muhamad Risky ◽  
Muhammad Fikky Hidayat ◽  
...  

<p>Transpiration is a key process in the terrestrial ecosystems linking water, carbon, and energy exchanges between the vegetation and the atmosphere. However, the understanding of transpiration rate, its spatiotemporal dynamics, and the controlling factors in tropical peatlands are still constrained by limited measurements. This study aims to investigate the transpiration rates at the stand level of Acacia plantation under different groundwater levels. The measurements were performed at two large-scale lysimeter plots with groundwater level of 40 and 80 cm below the ground surface. The transpiration rate was quantified based on sap flow measurements from 16 trees with different diameters at breast height using heat ratio method. The initial results indicate that the transpiration rate was closely correlated to the meteorological parameters, including atmospheric vapor pressure deficit and solar radiation. The two plots with different groundwater level regimes exhibit the same diurnal pattern of transpiration rate yet shows differences in their magnitude. The findings from this study will improve the understanding about relative contribution of transpiration to the total water balance under different groundwater levels. Further, an ongoing measurement of above and below-ground biomass growth and hydrological modeling work will advance the knowledge on plant-water interaction from this ecosystem.</p>


1999 ◽  
Vol 3 (3) ◽  
pp. 353-361 ◽  
Author(s):  
J. A. Butterworth ◽  
R. E. Schulze ◽  
L. P. Simmonds ◽  
P. Moriarty ◽  
F. Mugabe

Abstract. To evaluate the effects of variations in rainfall on groundwater, long-term rainfall records were used to simulate groundwater levels over the period 1953-96 at an experimental catchment in south-east Zimbabwe. Two different modelling methods were adopted. Firstly, a soil water balance model (ACRU) simulated drainage from daily rainfall and evaporative demand; groundwater levels were predicted as a function of drainage, specific yield and water table height. Secondly, the cumulative rainfall departure method was used to model groundwater levels from monthly rainfall. Both methods simulated observed groundwater levels over the period 1992-96 successfully, and long-term simulated trends in historical levels were comparable. Results suggest that large perturbations in groundwater levels area a normal feature of the response of a shallow aquifer to variations in rainfall. Long-term trends in groundwater levels are apparent and reflect the effect of cycles in rainfall. Average end of dry season water levels were simulated to be almost 3 m higher in the late 1970s compared to those of the early 1990s. The simulated effect of prolonged low rainfall on groundwater levels was particularly severe during the period 1981-92 with a series of low recharge years unprecedented in the earlier record. More recently, above average rainfall has resulted in generally higher groundwater levels. The modelling methods described may be applied in the development of guidelines for groundwater schemes to help ensure safe long-term yields and to predict future stress on groundwater resources in low rainfall periods; they are being developed to evaluate the effects of land use and management change on groundwater resources.


Proceedings ◽  
2018 ◽  
Vol 2 (11) ◽  
pp. 641
Author(s):  
Panagiota Theodoridou ◽  
Emmanouil Varouchakis ◽  
George Karatzas

The present research work uses Residual Kriging to estimate the groundwater level of an unconfined alluvial aquifer, as well as the trend function. The ground surface elevation is used as auxiliary variable in the trend model. Indicator Kriging is applied to detect potential vulnerable locations. Classical variogram functions are applied to determine the spatial correlation of the measurements. The risk of hydraulic head to lie below a threshold value is significant, mainly at the South and North parts of the aquifer, where the lower values of groundwater level are estimated, indicating that these areas require intense monitoring to ensure the water resources availability.


Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2336
Author(s):  
Balázs Trásy ◽  
Norbert Magyar ◽  
Tímea Havril ◽  
József Kovács ◽  
Tamás Garamhegyi

Since groundwater is a major source of water for drinking and for industrial and irrigation uses, the identification of the environmental processes determining groundwater level fluctuation is potentially a matter of great consequence, especially in light of the fact that the frequency of extreme climate events may be expected to increase, causing changes in groundwater recharge systems. In the recent study, data measured at a frequency of one hour were collected from the Szigetköz, an inland delta of the Danube. These were then used to determine the presence, or not, and magnitude of any hidden environmental background factors that may be causing groundwater level fluctuations. Through the application of dynamic factor analysis, it was revealed that changes in groundwater level are mainly determined by (i) the water level of neighboring rivers and (ii) evapotranspiration. The intensity of these factors may also be estimated spatially. If the background factors determined by dynamic factor analysis do indeed figure in the linear model as variables, then the time series of groundwater levels can be said to have been accurately estimated with the use of linear regression. The accuracy of the estimate is indicated by the fact that adjusted coefficient of determination exceeds 0.9 in 80% of the wells. The results, via an enhanced understanding of the reasons for changes in the fluctuation of groundwater, could assist in the development of sustainable water management and irrigation strategies and the preparation for varying potential climate change scenarios.


Proceedings ◽  
2018 ◽  
Vol 2 (11) ◽  
pp. 697 ◽  
Author(s):  
Klemen Kenda ◽  
Matej Čerin ◽  
Mark Bogataj ◽  
Matej Senožetnik ◽  
Kristina Klemen ◽  
...  

In this study a thorough analysis is conducted concerning the prediction of groundwater levels of Ljubljana polje aquifer. Machine learning methodologies are implemented using strongly correlated physical parameters as input variables. The results show that data-driven modelling approaches can perform sufficiently well in predicting groundwater level changes. Different evaluation metrics confirm and highlight the capability of these models to catch the trend of groundwater level fluctuations. Despite the overall adequate performance, further investigation is needed towards improving their accuracy in order to be comprised in decision making processes.


2013 ◽  
Vol 13 (4) ◽  
pp. 1146-1153 ◽  
Author(s):  
Tamás Ács ◽  
Zoltán Simonffy

Accurate knowledge of groundwater levels and flow conditions in the vicinity of groundwater-dependent terrestrial ecosystems (GWDTE-s) is required for identifying groundwater dependency and comparing the present situation with the optimal one, as part of the status assessment of groundwaters according to the EU Water Framework Directive. Geostatistical methods (like kriging or cokriging) may result in an unrealistic groundwater level map if only a few measured data are available. In this paper a new, grid-based, deterministic method (GSGW-model) is introduced. The aim of the model is to calculate groundwater depth within the required accuracy from sparse data of monitoring wells. The basic principle of the GSGW-model is that the groundwater table is a smoothed replica of the ground surface. Hence, changes in the groundwater level between two grid points are calculated as a function of the digital elevation model (DEM) and soil properties. The GSGW-model was tested in the Nyírség region (Hungary). Results were compared with those gained by ordinary kriging and cokriging. It has been concluded that kriging overestimates the groundwater level in the low part of the test area, where wetlands are located, while the maps produced by the GSGW-model are a better fit of the real variability, providing more reliable estimates of groundwater depth in GWDTE-s as well.


Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2279
Author(s):  
Benjamin T. Johnk ◽  
David C. Mays

It is well known that wildfires destroy vegetation and form soil crusts, both of which increase stormwater runoff that accelerates erosion, but less attention has been given to wildfire impacts on groundwater aquifers. Here, we present a systematic study across the contiguous United States to test the hypothesis that wildfires reduce infiltration, indicated by temporary reductions in groundwater levels. Geographic information systems (GIS) analysis performed using structured queried language (SQL) categorized wildfires by their proximity to wells with publicly available monitoring data. Although numerous wildfires were identified with nearby monitoring wells, most of these data were confounded by unknown processes, preventing a clear acceptance or rejection of the hypothesis. However, this analysis did identify a particular case study, the 1996 Honey Boy Fire in Beaver County, Utah, USA that supports the hypothesis. At this site, daily groundwater data from a well located 790 m from the centroid of the wildfire were used to assess the groundwater level before and after the wildfire. A sinusoidal time series adjusted for annual precipitation matches groundwater level fluctuations before the wildfire but cannot explain the approximately two-year groundwater level reduction after the wildfire. Thus, for this case study, there is a correlation, which may be causal, between the wildfire and temporary reduction in groundwater levels. Generalizing this result will require further research.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2916
Author(s):  
Nicola Pastore ◽  
Claudia Cherubini ◽  
Angelo Doglioni ◽  
Concetta Immacolata Giasi ◽  
Vincenzo Simeone

We analyzed the complex dynamics that are involved the groundwater level variations due to the episodic rainfall supply in the Ionian coastal plain surficial aquifer located in Southern Italy. In this aquifer, as a consequence of the particular hydrogeological framework, both direct and lateral recharge mechanisms coexist. Hence, the dynamics of groundwater level variations are quite complex and strongly non-linear. Our focus was essentially on the short-term behavior of groundwater levels, with a specific analysis on episodic rainfall events. To model these dynamics, due to the presence of the preferential pathways in the infiltration processes, a kinematic dispersion wave model was used. Specifically, a one-dimensional and non-linear particle-based numerical model was developed. It uses ideal particles with constant water volume travel, according to celerity and hydraulic dispersion, to simulate the infiltration rate wave through the vadose zone. The infiltration rate that reaches the water table represents the input function to evaluate the aquifer groundwater level fluctuations. As a consequence of the special lithological and storage capacity characteristics of the surficial layers, groundwater flow conditions change from unconfined to confined. The developed model analyzes the direct groundwater supply under natural conditions, including episodic rainfall, and it has been validated using a high-resolution time series of rainfall data and groundwater level obtained from the monitoring station Terra Montonata.


2009 ◽  
Vol 13 (4) ◽  
pp. 491-502 ◽  
Author(s):  
E. F. Viglizzo ◽  
E. G. Jobbágy ◽  
L. Carreño ◽  
F. C. Frank ◽  
R. Aragón ◽  
...  

Abstract. Although floods in watersheds have been associated with land-use change since ancient times, the dynamics of flooding is still incompletely understood. In this paper we explored the relations between rainfall, groundwater level, and cultivation to explain the dynamics of floods in the extremely flat and valuable arable lands of the Quinto river watershed, in central Argentina. The analysis involved an area of 12.4 million hectare during a 26-year period (1978–2003), which comprised two extensive flooding episodes in 1983–1988 and 1996–2003. Supported by information from surveys as well as field and remote sensing measurements, we explored the correlation among precipitation, groundwater levels, flooded area and land use. Flood extension was associated to the dynamics of groundwater level. While no correlation with rainfall was recorded in lowlands, a significant correlation (P<0.01) between groundwater and rainfall in highlands was found when estimations comprise a time lag of one year. Correlations between groundwater level and flood extension were positive in all cases, but while highly significant relations (P<0.01) were found in highlands, non significant relations (P>0.05) predominate in lowlands. Our analysis supports the existence of a cyclic mechanism driven by the reciprocal influence between cultivation and groundwater in highlands. This cycle would involve the following stages: (a) cultivation boosts the elevation of groundwater levels through decreased evapotranspiration; (b) as groundwater level rises, floods spread causing a decline of land cultivation; (c) flooding propitiates higher evapotranspiration favouring its own retraction; (d) cultivation expands again following the retreat of floods. Thus, cultivation would trigger a destabilizing feedback self affecting future cultivation in the highlands. It is unlikely that such sequence can work in lowlands. The results suggest that rather than responding directly and solely to the same mechanism, floods in lowlands may be the combined result of various factors like local rainfall, groundwater level fluctuations, surface and subsurface lateral flow, and water-body interlinking. Although the hypothetical mechanisms proposed here require additional understanding efforts, they suggest a promising avenue of environmental management in which cultivation could be steered in the region to smooth the undesirable impacts of floods.


Sign in / Sign up

Export Citation Format

Share Document