Intergrating morpho-stratigraphic and spectral units on Mercury and the Moon: Updates from the PLANMAP project

Author(s):  
Cristian Carli ◽  
Francesca Zambon ◽  
Francesca Altieri ◽  
Carlos Brandt ◽  
Angelo Pio Rossi ◽  
...  

<p>The numerous past and present space missions dedicated to the Solar System planetary bodies exploration, provided a huge amount of data so far. In particular, data acquired by cameras and spectrometers allowed for producing morpho-stratigraphic and mineralogical maps for many planets, satellites and minor bodies. Despite the considerable progresses, the integration of these products is still poorly addressed. To date, no geological maps of planetary bodies other than the Earth, containing both the information, are available yet. In this context, one of the main goals the “European Union's Horizon 2020 - PLANetary MAPping (PLANMAP)” project [1] is to provide, for the first time, highly informative geological maps of specific regions of interest on the Moon, Mercury and Mars, taking into account datasets publicly available in the Planetary Data System (PDS) database [2].</p><p>Here, we show the results achieved during the first two years of the project by the PLANMAP “Compositional unit definition Work Package”. In particular, we focused on specific areas, such as Hokusai quadrangle (22°-60° N, 0°-90°W) and Beethoven (13.24°S- 28.39° S; 116.1°- 132.32°W, 630 km diameter) and Rembrandt (24.58°S- 41.19°S, 261.72°- 282.73°W, 716 km diameter) basins on Mercury, and the Apollo basin (10 ° –60 ° S, 125 ° –175 ° W, 492 km diameter) within the northeastern edge of the ~ 2500 km South Pole-Aitken (SPA) basin on the Moon [3]. For this work, we considered the multi-color images acquired by the Mercury Dual Imaging System - Wide Angle Camera (MDIS-WAC) [3] onboard the MESSENGER mission and hyperspectral data provided by the Moon Mineralogy Mapper (M3) [4] onboard the Chandrayaan-1 mission. After data calibration and the instrumental artifacts removal, we have photometrically corrected the data to derive multi- and hyper-spectral reflectance maps, afterwards we defined appropriate spectral indices to eventually obtain the spectral unit maps of these regions of interest. In next step, we will integrate the spectral unit maps obtained with the morpho-stratigraphic ones provided by other PLANMAP work packages [5, 6, 7] to merge the information and finally retrieve geological units.</p><p> </p><p>This work is funded by the European Union’s Horizon 2020 research grant agreement No 776276- PLANMAP and by the Italian Space Agency (ASI) within the SIMBIO-SYS project (ASI-INAF agreement 2017-47-H).</p><p> </p><p><strong>References </strong></p><p><strong> </strong></p><p>[1] https://planmap.eu/</p><p>[2] https://pds.nasa.gov/</p><p>[3] S. Edward Hawkins III et al., 2007, Space Science Reviews, 131, 247–338.</p><p>[4] Pieters, C. E. et al., 2009, CURRENT SCIENCE, 96 (4).</p><p>[5] Brandt, C. et al., 2020 EGU General Assembly 2020.</p><p>[6] Ivanov, M.A., et al., 2018, Journal of Geophysical Research, 123 (10), 2585-2612.</p><p>[7] Wright, J., et al., 2019, 50<sup>th</sup> Lunar and Planetary Science Conference.</p>

2020 ◽  
Vol 48 (1) ◽  
pp. 233-258
Author(s):  
Meenakshi Wadhwa ◽  
Timothy J. McCoy ◽  
Devin L. Schrader

At present, meteorites collected in Antarctica dominate the total number of the world's known meteorites. We focus here on the scientific advances in cosmochemistry and planetary science that have been enabled by access to, and investigations of, these Antarctic meteorites. A meteorite recovered during one of the earliest field seasons of systematic searches, Elephant Moraine (EET) A79001, was identified as having originated on Mars based on the composition of gases released from shock melt pockets in this rock. Subsequently, the first lunar meteorite, Allan Hills (ALH) 81005, was also recovered from the Antarctic. Since then, many more meteorites belonging to these two classes of planetary meteorites, as well as other previously rare or unknown classes of meteorites (particularly primitive chondrites and achondrites), have been recovered from Antarctica. Studies of these samples are providing unique insights into the origin and evolution of the Solar System and planetary bodies. ▪  Antarctic meteorites dominate the inventory of the world's known meteorites and provide access to new types of planetary and asteroidal materials. ▪  The first meteorites recognized to be of lunar and martian origin were collected from Antarctica and provided unique constraints on the evolution of the Moon and Mars. ▪  Previously rare or unknown classes of meteorites have been recovered from Antarctica and provide new insights into the origin and evolution of the Solar System.


2020 ◽  
Author(s):  
Livia Giacomini ◽  
Francesco Aloisi ◽  
Ilaria De Angelis ◽  
Stefano Capretti

<p>Planets in a room (PIAR) is a DIY kit to build a small, lowcost spherical planet simulator and planetarium projector. Teachers, science communicators that run a small museum or planetarium, planetary scientists, amateur astronomers and other individuals can easily build it and use it on their own, to show and teach the Earth and other planets and to develop and share material with a growing online community. Having started in 2017 with a first version made using 3d-printed technology, PIAR has lately gone green, with a new wooden, plastic-free version of the kit. (http://www.planetsinaroom.net/)</p> <p>The project has been developed by the italian non-profit association Speak Science, with the collaboration of the Italian National Institute for Astrophysics (INAF) and the Roma Tre University, Dipartimento di Matematica e Fisica.</p> <p>It was funded by the Europlanet Outreach Funding Scheme in 2017 and was presented to the scientific community at EPSC and other scientific Congresses in the following years. Today, it is being distributed to an increasing number of schools, science museum and research institutions. PIAR is also one of the projects selected by the Europlanet Society for education and public outreach of planetary science: in 2020, it is being distributed to the 12 Europlanet Regional Hubs all around Europe, to be used in a number of educational projects.</p> <p>In this talk we will review the state of the art of the project presenting a selection of educational material and projects that have been developed for PIAR by scientists, teachers and communicators and that are focused on planetary science and on planetary habitability.</p> <p> </p> <p>Acknowledgements</p> <p>We acknowledge for this project the vast community of amateur and professionals that is actively working on innovative educational systems for astronomy such as planetarium and virtual reality projects (both hardware and software). Planets in a room is based on the work of this vast community of people and their experiences and results. We also acknowledge Europlanet for funding this work: the project Europlanet 2024 RI has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 871149.”</p> <p> </p> <p>References</p> <p>Giacomini L., Aloisi F., De Angelis I., “Planets in a room”, EPSC Abstracts Vol. 11, EPSC2017-280, 2017</p> <p>Giacomini L., Aloisi F., De Angelis I., Capretti S., “Planets in a Room: a DIY, low-cost educational kit”, EPSC Abstracts Vol. 12, EPSC2018-254, 2018</p> <p>Giacomini L., Aloisi F., De Angelis I., Capretti S., “Planets on (low-cost) balloons”, EPSC AbstractsVol. 13, EPSC-DPS2019-1243-1, 2019</p> <p>Giacomini L., Aloisi F., De Angelis I., Capretti S, “(Green) Planets in a Room”, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22153, https://doi.org/10.5194/egusphere-egu2020-22153, 2020</p>


2020 ◽  
Author(s):  
Elisabetta Dotto ◽  
Marek Banaszkiewicz ◽  
Sara Banchi ◽  
Maria A. Barucci ◽  
Fabrizio Bernardi ◽  
...  

<p>The research about Near Earth Objects (NEOs) is a major topic in planetary science. One reason is the potential hazard some of them pose to human beings and, more in general, to life on our planet. Moreover, the physical characterization of NEOs allows us to put constraints on the material accreted in the protoplanetary nebula at different solar distances and can give us insights into the early processes  that  governed  the  formation and the evolution of planets - including the delivery of water and organics to Earth -, and into further evolutionary processes that acted on asteroid since their formation - such as collisions and non-gravitational effects.</p> <p>The “NEOROCKS - The NEO Rapid Observation, Characterization and Key Simulations” Collaborative Research Project has been recently approved to address the topic c) “Improvement of our knowledge of the physical characteristics of the NEO population” of the call SU-SPACE-23-SEC-2019 from the Horizon 2020 - Work Programme 2018-2020 Leadership in Enabling and Industrial Technologies – Space.</p> <p>The aims of NEOROCKS are:</p> <ul> <li>to develop and validate advanced mathematical methods and innovative algorithms for NEO orbit determination and impact monitoring;</li> <li>to organize follow-up astronomical observations of NEOs efficiently, in order to obtain high-quality data needed to derive their physical properties, giving priority to timely addressing potentially hazardous objects;</li> <li>to improve dramatically statistical analysis, modelling and computer simulations aimed to understand the physical nature of NEOs, focussing on small size objects, which are of uttermost importance for designing effective impact mitigation measures in space and on the ground;</li> <li>to ensure maximum visibility and dissemination of the data beyond the timeline of the project, by hosting it in an existing astronomical data center facility;</li> <li>to foster European and international cooperation on NEO physical characterization, providing scenarios and roadmaps with the potential to scale-up at a global level the experience gained during the project;</li> <li>to apply and guarantee continuity of educational and public outreach activities needed to improve significantly public understanding and perception of the asteroid hazard, counteracting the spreading of “fake news” and unjustified alarms.</li> </ul> <p><strong>Acknowledgement</strong>: This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 870403 (project NEOROCKS).</p>


2021 ◽  
Author(s):  
Anita Heward ◽  
Jen DeWitt

<div> <p>In this presentation, we will give an overview of the Europlanet Evaluation Toolkit, a resource that aims to empower outreach providers and educators in measuring and appraising the impact of their activities. The toolkit is intended to provide advice and resources that can be simply and easily integrated into normal outreach and education activities. It is available as an interactive online resource (http://www.europlanet-eu.org/europlanet-evaluation-toolkit/), as a downloadable PDF and as a hard copy (including a book and set of activity cards).</p> </div><div> <p>The toolkit has been developed over a number of years with content provided by professional outreach evaluators Karen Bultitude and Jennifer DeWitt (UCL, UK). Initially, a series of focus groups and scoping discussions were held with active outreach providers from the planetary science community in order to determine what they wanted from such a toolkit, and what sort of tools would be of most interest. A shortlist of tools was developed based on these discussions, with volunteers testing out the tool instructions once they were drafted.</p> </div><div> <p>The toolkit begins with a brief introduction to evaluation and steps to choosing the right tools. This advice takes the form of a series of questions to help design an evaluation approach and make the most efficient and effective use possible of limited time and resources.</p> </div><div> <p>The toolkit offers a choice of 14 data collection tools that can be selected according to the audience (e.g. primary, secondary, interested adult, general public), the type of environment and activity (e.g. drop-in, interactive workshop, ongoing series, lecture/presentation or online) or according to when they might best be used (during, beginning/end, or after an event). The online version of the toolkit includes a set of interactive tables to help with the selection of which tool is most appropriate for any given situation.</p> </div><div> <p>The toolkit includes descriptions and worked examples of how to use two techniques (word-clouds and thematic coding) to analyse the data, as well as some top tips for evaluation and recommended resources.</p> </div><div> <p>For some of the tools, case study examples include information about how the tools have been used in the context of an event, how data was actually collected and analysed and what conclusions were reached, based on the data gathered.</p> </div><div> <p>The Europlanet Evaluation Toolkit has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 871149 (Europlanet 2024 RI) and 654208 (Europlanet 2020 RI).</p> </div>


2021 ◽  
Author(s):  
Francesca Zambon ◽  
Cristian Carli ◽  
Francesca Altieri ◽  
Jean-Philippe Combe ◽  
Carolyn H. van der Bogert ◽  
...  

<p>The spectral analysis of a planetary surface is fundamental for a deeper understanding of the mineralogy and composition. In particular, the determination of spectral units is a reliable method to infer the physical and compositional properties of a surface by processing several spectral parameters simultaneously, instead of the more traditional approach of interpreting each single parameter separately. To define the spectal units, we first compute the most relevant spectral parameters, based on a preliminary detailed analysis of the spectral properties of a surface. This method could be used for different bodies and is described in [1].</p><p>For this work, we selected the Apollo Basin area within South Polar Aitken [2,3], the largest and deepest impact basin on the Moon. We analyzed the M<sup>3</sup>/Chandrayaan-1 data [4] after performing the most up-to-date calibration, thermal removal and photometric correction [5,6]. Lunar spectra are characterized by two strong pyroxenes absorption bands at 1 and 2 µm. In this regard, we decided to define the Apollo Basin spectral units by using the two pyroxenes band depths, the reflectance at 540 nm (standard visible wavelength), and the spectral slope of the 1 µm (see [7]). In Apollo Basin, we found 12 different spectral units. Among these units, the most peculiar is the one linked to the basaltic smooth plains within the floor of the crater. This unit is characterized by low reflectance, deep band depths and a strongly positive spectral slopes (more red surfaces). Subsequently, an analysis of absorption band center at 1 and 2 µm and a comparison with RELAB synthetic pyroxenes [8] revealed a composition compatible with material dominated by strong pyroxene absorptions, e.g. clinopiroxenes, such as pigeonite or augite, with Low Ca and Mg, and relatively high Fe (Fs: 34-75; En: 6-23; Wo: 10-27). The rest of the units show a similar mineralogy to the orthopyroxenes, with intermediate amount of Fe and Mg.</p><p>This work allows for a detailed understanding of the mineralogy of Apollo Basin, but also lays the groundwork to search for a link between spectral, and morpho-stratigraphic units [9] to reach out highly informative geological maps of the Moon. This innovative approach is one of the main goals of the H2020 no. 776276-PLANMAP project [10].</p><p><strong>Acknowledgments: </strong>This work is funded by the European Union’s Horizon 2020 research grant agreement No 776276- PLANMAP.</p><p><strong>References: </strong>[1] Zambon et al., 2020 LPSC. [2] Ohtake, M. et al., 2014, GRL. [3] Moriarty, D.P. et al., 2018, JGR. [4] Pieters et al., 2009, Current Science. [5] PLANMAP D4.3- Spectral Indices and RGB maps. [6] Besse, S. et al., 2012, Icarus. [7] PLANMAP D4.3- Spectral Indices and RGB maps. [8] http://planetary.brown.edu/relabdocs/synth_pyx/pyroxenes.html. [9] Ivanov, M.A., 2018, JGR. [10] https://www.planmap.eu/.</p>


2020 ◽  
Author(s):  
Ricardo Hueso ◽  
Agustin Sánchez-Lavega ◽  
Jon Legarreta ◽  
Iñaki Ordonez-Etxeberria ◽  
Jose Félix Rojas ◽  
...  

<p>PVOL is an online database of amateur observations of solar system planets hosted by the University of the Basque Country at http://pvol2.ehu.es/ [1]. PVOL stands for Planetary Virtual Observatory and Laboratory and is one of the data services integrated in VESPA: a large collection of data services integrated in the Virtual European Solar and Planetary Access services using the same data access protocol (EPN-TAP) [2]. VESPA is an integral part of the Europlanet 2020 and 2024 Research Infrastructures and PVOL is one of its most used services. PVOL accumulates images provided by more than 300 amateur observers distributed through the globe and currently contains more than 47,000 image files. Most of the data correspond to image observations of Jupiter (67%) and Saturn (22%), but PVOL contains also useful data from Venus, Mars, Uranus and Neptune and some smaller collections of objects with no atmosphere (the Moon and Galilean satellites). In this contribution we document future plans for the service which will be carried out through 2021-2023 and we show the scientific potential of the data available in PVOL.</p> <p>Future plans for PVOL include frequent observation alerts, integration in the database of navigation files of the images from the popular WinJupos software (ims files), addition of amateur spectra of the giant planets, and a search engine and new data service of Jupiter maps obtained from the JunoCam instrument on the Juno mission that will also be integrated in PVOL/VESPA. This will allow to perform combined searches of data obtained close in time from amateurs (PVOL), HST (queries of HST images are also integrated in VESPA) and JunoCam (new service).</p> <p>The science potential of amateur data comes from the availability of long-term data (PVOL contains Jupiter data since 2000 and Mars and Venus data since 2016), frequent observations (several daily observations of each planet close to their oppositions capable to cover complete longitudes of each planet) and high-resolution images provided by key contributors, with some of them capable to resolve highly-contrasted features of 0.05-0.10 arcsec. We review recent trends in analysis of this data from an analysis of scientific publications partially or highly based on data obtained from PVOL. We show that amateur observations remain as a valuable resource for high-impact science on modern research on different planets (3-5).</p> <p><strong>Acknowledgements</strong></p> <p>Europlanet 2024 RI has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 871149. We are very grateful to the ensemble of amateur astronomers sending their data to PVOL. We are in debt by the quality of many of these observations and the regular observations provided by many of them requiring long sleepless nights and even longer days of detailed image processing.</p> <p><strong>References</strong></p> <p>(1) Hueso et al., The Planetary Virtual Observatory and Laboratory (PVOL) and its integration into the Virtual European Solar and Planetary Access (VESPA). Planet. Space Science, 150, 22-35 (2018).</p> <p>(2) Erard et al., VESPA: A community-driven Virtual Observatory in Planetary Science. Planet. Space Science, 150, 65-85 (2018).</p> <p>(3) Sánchez-Lavega et al., The impact of a large object on Jupiter in 2009 July, Astrophysical Journal Letters, 715, L155 (2010).</p> <p>(4) Sánchez-Lavega et al., An extremely high altitude plume seen at Mars morning terminator. Nature, 518, 525-528 (2015).</p> <p>(5) Sánchez-Lavega et al., A complex storm system in Saturn’s north polar atmosphere in 2018, Nature Astronomy, 4, 180-187 (2020).</p>


2021 ◽  
Author(s):  
James Head

<p>The Earth’s Moon is a cornerstone and keystone in the understanding of the origin and evolution of the terrestrial, Earth-like planets.  It is a cornerstone in that most of the other paradigms for the origin, modes of crustal formation (primary, secondary and tertiary), bombardment history, role of impact craters and basins in shaping early planetary surfaces and fracturing and modifying the crust and upper mantle, volcanism and the formation of different types of secondary crust, and petrogenetic models where no samples are available, all have a fundamental foundation in lunar science.  The Moon is a keystone in that knowledge of the Moon holds upright the arch of our understand of the terrestrial planets. It is thus imperative to dedicate significant resources to the continued robotic and human exploration of this most accessible of other terrestrial planetary bodies, and to use this cornerstone and keystone as a way to frame critical questions about the Solar System as a whole, and to explore other planetary bodies to modify and strengthen the lunar paradigm.   </p> <p>What is the legacy, the long-term impact of our efforts? The Apollo Lunar Exploration Program revealed the Earth as a planet, showed the inextricable links of the Earth-Moon system, and made the Solar System our neighborhood. We now ask: What are our origins and where are we heading?: We seek to understand the origin and evolution of the Moon, the Moon’s links to the earliest history of Earth, and its lessons for exploration and understanding of Mars and other terrestrial planets. A basis for our motivation is the innate human qualities of curiosity and exploration, and the societal/species-level need to heed Apollo 16 Commander John Young’s warning that “Single-planet species don’t survive!”. These perspectives impel us to learn the lessons of off-Earth, long-term, long-distance resupply and self-sustaining presence, in order to prepare for the exploration of Mars and other Solar System destinations. </p> <p>Key questions in this lunar exploration endeavor based on a variety of studies and analyses (1-3) include:</p> <p>-How do planetary systems form and evolve over time and when did major events in our Solar System occur?</p> <p>How did planetary interiors differentiate and evolve through time, and how are interior processes expressed through surface-atmosphere interactions?</p> <p>-What processes shape planetary surfaces and how do these surfaces record Solar System history?</p> <p>-How do worlds become habitable and how is habitability sustained over time?</p> <p>-Why are the atmospheres and climates of planetary bodies so diverse, and how did they evolve over time?</p> <p>-Is there life elsewhere in the Solar System?</p> <p>Specific lunar goals and objectives will be outlined in this broad planetary science context.</p> <p> </p> <p>References: 1. Carle Pieters et al. (2018) http://www.planetary.brown.edu/pdfs/5480.pdf, 2. Lunar Exploration Analysis Group, https://www.lpi.usra.edu/leag/. 3) Erica Jawin et al. Planetary Science Priorities for the Moon in the Decade 2023-2033: Lunar Science is Planetary Science.</p>


2021 ◽  
Author(s):  
Michaela Musilova ◽  
Bernard Foing ◽  
Henk Rogers

<p>Lava tube exploration has become an important part of discussions relating to the search for life on Mars by both humans and robots. On Mars, lava tubes may contain biosignatures and existing lifeforms. Alternatively, on the Moon, lava tubes may serve as sheltered environments for the construction of human settlements. Nevertheless, lava tubes can also be difficult environments for robotic operations and they can pose a safety hazard to humans as well. It will thus be extremely important to prepare for lava tube exploration by humans and robots in analog environments on Earth. The Hawaii Space Exploration Analog and Simulation (HI-SEAS) habitat is a lunar and Martian analog research station located on the volcano Mauna Loa in Hawaii. The International MoonBase Alliance (IMA) organises missions at HI-SEAS, during which crews of six analog astronauts perform research and technology testing relevant to the exploration of the Moon and Mars. The missions that take place at HI-SEAS can be of varied duration, from several days to several months, depending on the needs of the researchers. They are open to space agencies, organizations and companies worldwide to take part in, provided their research and technology testing will help contribute to the exploration of the Moon and Mars. Since the HI-SEAS habitat is located on lava flows, its surroundings provide valuable access to performing high-fidelity planetary science fieldwork with very little plant or animal life present, and a wide variety of volcanic features to explore, such as lava tubes, channels, and tumuli. This terrain is also ideal for rover and in situ resource utilization (ISRU) testing because of its great similarity to the basaltic terrains on the Moon and Mars. HI-SEAS crews have performed a number of biochemical and geophysical research projects in the lava tubes accessible to them near the habitat. They explored and collected research samples while wearing Extra-vehicular Activity (EVA) analog spacesuits and following strict EVA protocols. These activities are very challenging for the crew, due to the bulky gloves and EVA equipment they have to wear, while performing precise biochemical research that is sensitive to contamination. The crews also have to take into consideration their safety, their limited life support systems during EVAs and a number of other factors relevant to space exploration missions. Further studies will be needed to assess how best to combine scientific goals with human exploration goals during future human missions, which may use lava tubes as a resource as well as a key site for scientific research.</p>


Author(s):  
John H D Harrison ◽  
Amy Bonsor ◽  
Mihkel Kama ◽  
Andrew M Buchan ◽  
Simon Blouin ◽  
...  

Abstract White dwarfs that have accreted planetary bodies are a powerful probe of the bulk composition of exoplanetary material. In this paper, we present a Bayesian model to explain the abundances observed in the atmospheres of 202 DZ white dwarfs by considering the heating, geochemical differentiation, and collisional processes experienced by the planetary bodies accreted, as well as gravitational sinking. The majority (>60%) of systems are consistent with the accretion of primitive material. We attribute the small spread in refractory abundances observed to a similar spread in the initial planet-forming material, as seen in the compositions of nearby stars. A range in Na abundances in the pollutant material is attributed to a range in formation temperatures from below 1,000 K to higher than 1,400 K, suggesting that pollutant material arrives in white dwarf atmospheres from a variety of radial locations. We also find that Solar System-like differentiation is common place in exo-planetary systems. Extreme siderophile (Fe, Ni or Cr) abundances in 8 systems require the accretion of a core-rich fragment of a larger differentiated body to at least a 3σ significance, whilst one system shows evidence that it accreted a crust-rich fragment. In systems where the abundances suggest that accretion has finished (13/202), the total mass accreted can be calculated. The 13 systems are estimated to have accreted masses ranging from the mass of the Moon to half that of Vesta. Our analysis suggests that accretion continues for 11Myrs on average.


2021 ◽  
Author(s):  
marco cardinale ◽  
Gaetano Di Achille ◽  
David A.Vaz

<p>Orbital data from the Messenger spacecraft (1) reveal that part of the Mercury surface is covered by smooth plains, which are interpreted to be flood volcanic material across the planetary surface (2). In this work, we present a detailed geo-structural map of the northern smooth plains between<span class="Apple-converted-space">  </span>latitudes 29°N and 65°N. Our 1:100.000-scale map is obtained semi-automatically, using an algorithm to map all scarps from a DEM (3,4) followed by visual inspection and classification in ArcGIS. We created a DEM<span class="Apple-converted-space">  </span>using the raw MLA (Mercury Laser Altimeter) data (1) ,with 500 m/pix, and we used the Mercury Messenger MDIS (Mercury Dual Imaging System) (1,2) base map with 166m per pixel for the classification stage. With this approach, we mapped and characterized 51664 features on Mercury, creating a database with several morphometric attributes (e.g. length, azimuth, scarp height) which we will use to study the tectonic evolution of the smooth plains.<span class="Apple-converted-space"> </span></p> <p>In this way, we classified wrinkle ridges’s scarps, ghost craters, rim craters and central peaks. The morphometric parameters of the wrinkle ridges will<span class="Apple-converted-space">  </span>be quantitatively analyzed, in order to characterizer the possible tectonic process that could have formed them.</p> <p>This map can be considered an enhancement for the north pole of the global geological map of Mercury (1, 5).</p> <p> </p> <p>References</p> <ul> <li>Hawkins, S. E., III, et al. (2007), The Mercury Dual Imaging System on the MESSENGER spacecraft, Space Sci. Rev., 131, 247–338..<span class="Apple-converted-space"> </span></li> <li>Denevi, B. W., et al. (2013), The distribution and origin of smooth plains on Mercury, J. Geophys. Res. Planets, 118, 891–907, doi:10.1002/jgre.20075.</li> <li>Alegre Vaz, D. (2011). Analysis of a Thaumasia Planum rift through automatic mapping and strain characterization of normal faults. Planetary and Space Science, 59(11-12), 1210–1221. doi:10.1016/j.pss.2010.07.008 .</li> <li>Vaz, D. A., Spagnuolo, M. G., & Silvestro, S. (2014). Morphometric and geometric characterization of normal faults on Mars. Earth and Planetary Science Letters, 401, 83–94. doi:10.1016/j.epsl.2014.05.022.</li> <li>Kinczyk, M. J., Prockter, L., Byrne, P., Denevi, B., Buczkowski, D., Ostrach, L., & Miller, E. (2019, September). The First Global Geological Map of Mercury. In <em>EPSC-DPS Joint Meeting 2019</em> (Vol. 2019, pp. EPSC-DPS2019).</li> </ul>


Sign in / Sign up

Export Citation Format

Share Document