The Europlanet Evaluation Toolkit

Author(s):  
Anita Heward ◽  
Jen DeWitt

<div> <p>In this presentation, we will give an overview of the Europlanet Evaluation Toolkit, a resource that aims to empower outreach providers and educators in measuring and appraising the impact of their activities. The toolkit is intended to provide advice and resources that can be simply and easily integrated into normal outreach and education activities. It is available as an interactive online resource (http://www.europlanet-eu.org/europlanet-evaluation-toolkit/), as a downloadable PDF and as a hard copy (including a book and set of activity cards).</p> </div><div> <p>The toolkit has been developed over a number of years with content provided by professional outreach evaluators Karen Bultitude and Jennifer DeWitt (UCL, UK). Initially, a series of focus groups and scoping discussions were held with active outreach providers from the planetary science community in order to determine what they wanted from such a toolkit, and what sort of tools would be of most interest. A shortlist of tools was developed based on these discussions, with volunteers testing out the tool instructions once they were drafted.</p> </div><div> <p>The toolkit begins with a brief introduction to evaluation and steps to choosing the right tools. This advice takes the form of a series of questions to help design an evaluation approach and make the most efficient and effective use possible of limited time and resources.</p> </div><div> <p>The toolkit offers a choice of 14 data collection tools that can be selected according to the audience (e.g. primary, secondary, interested adult, general public), the type of environment and activity (e.g. drop-in, interactive workshop, ongoing series, lecture/presentation or online) or according to when they might best be used (during, beginning/end, or after an event). The online version of the toolkit includes a set of interactive tables to help with the selection of which tool is most appropriate for any given situation.</p> </div><div> <p>The toolkit includes descriptions and worked examples of how to use two techniques (word-clouds and thematic coding) to analyse the data, as well as some top tips for evaluation and recommended resources.</p> </div><div> <p>For some of the tools, case study examples include information about how the tools have been used in the context of an event, how data was actually collected and analysed and what conclusions were reached, based on the data gathered.</p> </div><div> <p>The Europlanet Evaluation Toolkit has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 871149 (Europlanet 2024 RI) and 654208 (Europlanet 2020 RI).</p> </div>

2020 ◽  
Author(s):  
Livia Giacomini ◽  
Francesco Aloisi ◽  
Ilaria De Angelis ◽  
Stefano Capretti

<p>Planets in a room (PIAR) is a DIY kit to build a small, lowcost spherical planet simulator and planetarium projector. Teachers, science communicators that run a small museum or planetarium, planetary scientists, amateur astronomers and other individuals can easily build it and use it on their own, to show and teach the Earth and other planets and to develop and share material with a growing online community. Having started in 2017 with a first version made using 3d-printed technology, PIAR has lately gone green, with a new wooden, plastic-free version of the kit. (http://www.planetsinaroom.net/)</p> <p>The project has been developed by the italian non-profit association Speak Science, with the collaboration of the Italian National Institute for Astrophysics (INAF) and the Roma Tre University, Dipartimento di Matematica e Fisica.</p> <p>It was funded by the Europlanet Outreach Funding Scheme in 2017 and was presented to the scientific community at EPSC and other scientific Congresses in the following years. Today, it is being distributed to an increasing number of schools, science museum and research institutions. PIAR is also one of the projects selected by the Europlanet Society for education and public outreach of planetary science: in 2020, it is being distributed to the 12 Europlanet Regional Hubs all around Europe, to be used in a number of educational projects.</p> <p>In this talk we will review the state of the art of the project presenting a selection of educational material and projects that have been developed for PIAR by scientists, teachers and communicators and that are focused on planetary science and on planetary habitability.</p> <p> </p> <p>Acknowledgements</p> <p>We acknowledge for this project the vast community of amateur and professionals that is actively working on innovative educational systems for astronomy such as planetarium and virtual reality projects (both hardware and software). Planets in a room is based on the work of this vast community of people and their experiences and results. We also acknowledge Europlanet for funding this work: the project Europlanet 2024 RI has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 871149.”</p> <p> </p> <p>References</p> <p>Giacomini L., Aloisi F., De Angelis I., “Planets in a room”, EPSC Abstracts Vol. 11, EPSC2017-280, 2017</p> <p>Giacomini L., Aloisi F., De Angelis I., Capretti S., “Planets in a Room: a DIY, low-cost educational kit”, EPSC Abstracts Vol. 12, EPSC2018-254, 2018</p> <p>Giacomini L., Aloisi F., De Angelis I., Capretti S., “Planets on (low-cost) balloons”, EPSC AbstractsVol. 13, EPSC-DPS2019-1243-1, 2019</p> <p>Giacomini L., Aloisi F., De Angelis I., Capretti S, “(Green) Planets in a Room”, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22153, https://doi.org/10.5194/egusphere-egu2020-22153, 2020</p>


2021 ◽  
Vol 20 (3) ◽  
pp. 368-381
Author(s):  
Susanne Buehrer ◽  
Evanthia Kalpazidou Schmidt ◽  
Dorottya Rigler ◽  
Rachel Palmen

Evaluation cultures and evaluation capacity building vary greatly across the European Union. Western European countries, such as Austria, Germany, Denmark and Sweden, have been termed as leading countries in the evaluation as they have built up well-established evaluation cultures and carry out systematic evaluations of programmes and institutions. In contrast, in Central and Eastern European (CEE) countries, efforts continue to establish evaluation practices and further develop the current evaluation culture. In Hungary, for example, an established research and innovation evaluation practice does not exist, not one specifically considering gender equality in research and innovation evaluations with the exception of research and innovation programmes financed by the EU Structural Funds. Based on the results of a Horizon 2020 project, we apply a context-sensitive evaluation concept in Hungary that enables program owners and evaluators to develop a tailor-made design and impact model for their planned or ongoing gender equality interventions. The development of this evaluation was based on a thorough analysis of the literature and 19 case studies, building on documentary analysis and semi-structured interviews. The article shows that this evaluation approach is applicable also in countries with a certain catch-up demand of the existing overall evaluation culture. The special feature of the presented evaluation approach is, on the one hand, that the evaluation is context-sensitive. On the other hand, this approach makes it possible not only to depict effects on gender equality itself, but also to anticipate effects on research and innovation. Such effects can, for example, be a stronger orientation of research towards societal needs, which makes it particularly interesting for private companies.


2020 ◽  
Author(s):  
Ricardo Hueso ◽  
Agustin Sánchez-Lavega ◽  
Jon Legarreta ◽  
Iñaki Ordonez-Etxeberria ◽  
Jose Félix Rojas ◽  
...  

<p>PVOL is an online database of amateur observations of solar system planets hosted by the University of the Basque Country at http://pvol2.ehu.es/ [1]. PVOL stands for Planetary Virtual Observatory and Laboratory and is one of the data services integrated in VESPA: a large collection of data services integrated in the Virtual European Solar and Planetary Access services using the same data access protocol (EPN-TAP) [2]. VESPA is an integral part of the Europlanet 2020 and 2024 Research Infrastructures and PVOL is one of its most used services. PVOL accumulates images provided by more than 300 amateur observers distributed through the globe and currently contains more than 47,000 image files. Most of the data correspond to image observations of Jupiter (67%) and Saturn (22%), but PVOL contains also useful data from Venus, Mars, Uranus and Neptune and some smaller collections of objects with no atmosphere (the Moon and Galilean satellites). In this contribution we document future plans for the service which will be carried out through 2021-2023 and we show the scientific potential of the data available in PVOL.</p> <p>Future plans for PVOL include frequent observation alerts, integration in the database of navigation files of the images from the popular WinJupos software (ims files), addition of amateur spectra of the giant planets, and a search engine and new data service of Jupiter maps obtained from the JunoCam instrument on the Juno mission that will also be integrated in PVOL/VESPA. This will allow to perform combined searches of data obtained close in time from amateurs (PVOL), HST (queries of HST images are also integrated in VESPA) and JunoCam (new service).</p> <p>The science potential of amateur data comes from the availability of long-term data (PVOL contains Jupiter data since 2000 and Mars and Venus data since 2016), frequent observations (several daily observations of each planet close to their oppositions capable to cover complete longitudes of each planet) and high-resolution images provided by key contributors, with some of them capable to resolve highly-contrasted features of 0.05-0.10 arcsec. We review recent trends in analysis of this data from an analysis of scientific publications partially or highly based on data obtained from PVOL. We show that amateur observations remain as a valuable resource for high-impact science on modern research on different planets (3-5).</p> <p><strong>Acknowledgements</strong></p> <p>Europlanet 2024 RI has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 871149. We are very grateful to the ensemble of amateur astronomers sending their data to PVOL. We are in debt by the quality of many of these observations and the regular observations provided by many of them requiring long sleepless nights and even longer days of detailed image processing.</p> <p><strong>References</strong></p> <p>(1) Hueso et al., The Planetary Virtual Observatory and Laboratory (PVOL) and its integration into the Virtual European Solar and Planetary Access (VESPA). Planet. Space Science, 150, 22-35 (2018).</p> <p>(2) Erard et al., VESPA: A community-driven Virtual Observatory in Planetary Science. Planet. Space Science, 150, 65-85 (2018).</p> <p>(3) Sánchez-Lavega et al., The impact of a large object on Jupiter in 2009 July, Astrophysical Journal Letters, 715, L155 (2010).</p> <p>(4) Sánchez-Lavega et al., An extremely high altitude plume seen at Mars morning terminator. Nature, 518, 525-528 (2015).</p> <p>(5) Sánchez-Lavega et al., A complex storm system in Saturn’s north polar atmosphere in 2018, Nature Astronomy, 4, 180-187 (2020).</p>


2021 ◽  
Author(s):  
Ana M. Mancho ◽  
Guillermo García-Sánchez ◽  
Antonio G. Ramos ◽  
Josep Coca ◽  
Begoña Pérez-Gómez ◽  
...  

<p>This presentation discusses a downstream application from Copernicus Services, developed in the framework of the IMPRESSIVE project, for the monitoring of  the oil spill produced after the crash of the ferry “Volcan de Tamasite” in waters of the Canary Islands on the 21<sup>st</sup> of April 2017. The presentation summarizes the findings of [1] that describe a complete monitoring of the diesel fuel spill, well-documented by port authorities. Complementary information supplied by different sources enhances the description of the event. We discuss the performance of very high resolution hydrodynamic models in the area of the Port of Gran Canaria and their ability for describing the evolution of this event. Dynamical systems ideas support the comparison of different models performance. Very high resolution remote sensing products and in situ observation validate the description.</p><p>Authors acknowledge support from IMPRESSIVE a project funded by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 821922. SW acknowledges the support of ONR Grant No. N00014-01-1-0769</p><p><strong>References</strong></p><p>[1] G.García-Sánchez, A. M. Mancho, A. G. Ramos, J. Coca, B. Pérez-Gómez, E. Álvarez-Fanjul, M. G. Sotillo, M. García-León, V. J. García-Garrido, S. Wiggins. Very High Resolution Tools for the Monitoring and Assessment of Environmental Hazards in Coastal Areas.  Front. Mar. Sci. (2021) doi: 10.3389/fmars.2020.605804.</p>


2021 ◽  
Author(s):  
Stefanie Holzwarth ◽  
Martin Bachmann ◽  
Bringfried Pflug ◽  
Aimé Meygret ◽  
Caroline Bès ◽  
...  

<p>The objective of the H2020 project “Copernicus Cal/Val Solution (CCVS)” is to define a holistic Cal/Val strategy for all ongoing and upcoming Copernicus Sentinel missions. This includes an improved calibration of currently operational or planned Copernicus Sentinel sensors and the validation of Copernicus core products generated by the payload ground segments. CCVS will identify gaps and propose long-term solutions to address currently existing constraints in the Cal/Val domain and exploit existing synergies between the missions. An overview of existing calibration and validation sources and means is needed before starting the gap analysis. In this context, this survey is concerned with measurement capabilities for aerial campaigns.</p><p>Since decades airborne observations are an essential contribution to support Earth-System model development and space-based observing programs, both in the domains of Earth Observation (radar and optical) as well as for atmospheric research. The collection of airborne reference data can be directly related to satellite observations, since they are collected in ideal validation conditions using well calibrated reference sensors. Many of these sensors are also used to validate and characterize postlaunch instrument performance. The variety of available aircraft equipped with different instrumentations ranges from motorized gliders to jets acquiring data from different heights to the upper troposphere. In addition, balloons are also used as platforms, either small weather balloons with light payload (around 3 kg), or open stratospheric balloons with big payload (more than a ton). For some time now, UAVs/drones are also used in order to acquire data for Cal/Val purposes. They offer a higher flexibility compared to airplanes, plus covering a bigger area compared to in-situ measurements on ground. On the other hand, they also have limitations when it comes to the weight of instrumentation and maximum altitude level above ground. This reflects the wide range of possible aerial measurements supporting the Cal/Val activities.</p><p>The survey will identify the different airborne campaigns. The report will include the description of campaigns, their spatial distribution and extent, ownership and funding, data policy and availability and measurement frequency. Also, a list of common instrumentation, metrological traceability, availability of uncertainty evaluation and quality management will be discussed. The report additionally deals with future possibilities e.g., planned developments and emerging technologies in instrumentation for airborne and balloon based campaigns.</p><p>This presentation gives an overview of the preliminary survey results and puts them in context with the Cal/Val requirements of the different Copernicus Sentinel missions.</p><p>This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the grant agreement No 101004242.</p>


2021 ◽  
Author(s):  
Panagiotis Anagnostou ◽  
Sotiris Tasoulis ◽  
Aristidis G. Vrahatis ◽  
Spiros Georgakopoulos ◽  
Matthew Prina ◽  
...  

AbstractPreventive healthcare is a crucial pillar of health as it contributes to staying healthy and having immediate treatment when needed. Mining knowledge from longitudinal studies has the potential to significantly contribute to the improvement of preventive healthcare. Unfortunately, data originated from such studies are characterized by high complexity, huge volume and a plethora of missing values. Machine Learning, Data Mining and Data Imputation models are utilized as part of solving the aforementioned challenges, respectively. Towards this direction, we focus on the development of a complete methodology for the ATHLOS (Ageing Trajectories of Health: Longitudinal Opportunities and Synergies) Project - funded by the European Union’s Horizon 2020 Research and Innovation Program, which aims to achieve a better interpretation of the impact of aging on health. The inherent complexity of the provided dataset lie in the fact that the project includes 15 independent European and international longitudinal studies of aging. In this work, we particularly focus on the HealthStatus (HS) score, an index that estimates the human status of health, aiming to examine the effect of various data imputation models to the prediction power of classification and regression models. Our results are promising, indicating the critical importance of data imputation in enhancing preventive medicine’s crucial role.


Author(s):  
Harry van Bommel

This chapter discusses the strengthening of ties between the EU and Israel during the breakdown of Oslo as well as during other fruitless peace initiatives. Shortly after the Oslo process began, the EU and Israel initiated negotiations on broadening their cooperation. This led to the signing of the EU–Israel Association Agreement in 1995. As well as economic cooperation, which was established as early as 1975 in a cooperation agreement, this new treaty included other areas, such as scientific and technical research. In more recent years the relationship between the EU and Israel has been deepened further. In 2014 the EU and Israel signed the Horizon 2020 scientific cooperation agreement, which gives Israel equal access with EU member states to the largest-ever EU research and innovation program. In itself, there is nothing wrong with the deepening of economic, scientific, cultural, and political relations between countries. However, the deepening of relations between the EU and Israel means indirect support for the Israeli occupation and the policy of expanding the settlements.


Author(s):  
Marinella Arena

The communication of architecture is a complex and multidisciplinary process, indispensable for enhancing a monument properly and to allow understanding and knowledge to a large number of users. The European Architectural Heritage, and the Italian one in particular, is enormous; the processes of knowledge, cataloguing and analysis are far from being complete. This fact has prompted the European Union to invest, especially in recent years, in research projects designed to increase the communication strategies and put a value on the present assets in its territory. For example, the programs of the European Commission for Research and Innovation, found in “Horizon 2020”, define the communication based on the new media as the new frontier for the enhancement of architectural heritage (Reflective Cities). The main goal is to develop a better awareness of the Architectural Heritage through increased interaction between the citizen, the monument and the scientific community.


BMJ Open ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. e025025
Author(s):  
George Garas ◽  
Isabella Cingolani ◽  
Vanash M Patel ◽  
Pietro Panzarasa ◽  
Ara Darzi ◽  
...  

ObjectiveTo evaluate the role of the European Union (EU) as a research collaborator in the UK’s success as a global leader in healthcare research and innovation and quantify the impact that Brexit may have.DesignNetwork and regression analysis of scientific collaboration, followed by simulation models based on alternative scenarios.SettingInternational real-world collaboration network among all countries involved in robotic surgical research and innovation.Participants772 organisations from industry and academia nested within 56 countries and connected through 2397 collaboration links.Main outcome measuresResearch impact measured through citations and innovation value measured through the innovation index.ResultsGlobally, the UK ranks third in robotic surgical innovation, and the EU constitutes its prime collaborator. Brokerage opportunities and collaborators’ geographical diversity are associated with a country’s research impact (c=211.320 and 244.527, respectively; p<0·01) and innovation (c=18.819 and 30.850, respectively; p<0·01). Replacing EU collaborators with US ones is the only strategy that could benefit the UK, but on the condition that US collaborators are chosen among the top-performing ones, which is likely to be very difficult and costly, at least in the short term.ConclusionsThis study suggests what has long been argued, namely that the UK-EU research partnership has been mutually beneficial and that its continuation represents the best possible outcome for both negotiating parties. However, the uncertainties raised by Brexit necessitate looking beyond the EU for potential research partners. In the short term, the UK’s best strategy might be to try and maintain its academic links with the EU. In the longer term, strategic relationships with research powerhouses, including the USA, China and India, are likely to be crucial for the UK to remain a global innovation leader.


Sign in / Sign up

Export Citation Format

Share Document