3D Architecture and Plio-Quaternary evolution of the Paola Basin: Insights into the Forearc of the Tyrrhenian-Ionian Subduction System

Author(s):  
Marta Corradino ◽  
Fabrizio Pepe ◽  
Giovanni Bertotti ◽  
Vincenzo Picotti ◽  
Carmelo Monaco ◽  
...  

<p>Fore-arc basins form structurally in response to a variety of subduction zone processes. The sedimentary infill records the tectono-stratigraphic evolution of the basin, and thus, provides information on the dynamic of the fore-arc region. Using seismic reflection profiles and bathymetric data, we analysed the stratigraphy and tectonics of the Paola Basin, deciphering the tectono-sedimentary mechanisms that acted in the forearc of the Tyrrhenian‐Ionian subduction system during the Plio-Quaternary. The Paola Basin is a NNW-SSE trending syncline, bounded by the Coastal Chain to the east and a regional-scale anticline, here called Paola Anticline, to the west. There are no major normal faults bordering the basin. It hosts up to 5.2 km thick Plio-Quaternary deposits, most of them supplied from Apenninic/Sila entry points and transported by longshore currents. The total subsidence reaches the value of ∼5 km. The sedimentary load varies from 60% to 75% of the total subsidence. The Pliocene to Lower Pleistocene sedimentary infill of the syncline displays a strata growth geometry consistent with a continuous rotation of the eastern limb of the Paola Anticline. Crustal folding is the mechanism that better explains the lack of significant normal faults bordering the Paola Basin, its tectonic subsidence and the uplift of the Paola Anticline. During the Late Pliocene - Early Pleistocene, contractional deformation continued, and also strike-slip movements affected both the Paola Anticline and the eastern sector of the basin. This resulted in the growth of the central sector of the Coastal Chain, leading to the definition of the Paola and Crati basins, previously connected in a larger proto basin. Also, strike-slip faults with associated releasing and restraining bends formed in the hinge zone of the Paola Anticline. The bathymetric expression of the strike-slip zone consists of structural highs and depressions that overall form the Paola Ridge. The development of strike-slip tectonics is associated to the trench-parallel component of the upper plate motion occurring in the oblique subduction setting. The growth of the Paola Anticline and Paola Basin was coeval with the opening of the Vavilov and Marsili back arc basins. Thus, extensional and contractional tectonics spatially coexisted along sectors of the upper plate of the Tyrrhenian-Ionian subduction system from Early Pliocene to Early Pleistocene. Since the Middle Pleistocene, the growth of the Paola Anticline and Paola Basin came to an end, and extensional tectonics controlled the evolution of the forearc region.</p>

2018 ◽  
Vol 40 (1) ◽  
pp. 309 ◽  
Author(s):  
G. Α. Georgiadis ◽  
M. D. Tranos ◽  
D. M. Mountrakis

The boundary between Internal Hellenides and the Hellenic hinterland is exposed in the southern part of the Athos peninsula as a NE-SW trending contact between the Serbomacedonian massif and the Circum-Rhodope Belt. The main tectonic features and deformation of the area during late- and post-alpine times have been investigated in order to understand better the late orogenic processes that led to the present arrangement of this boundary. The field study showed that the prevailing structures in the southern Athos peninsula are an asymmetric, SW-plunging, NWverging mega-scale antiform and a NE-SW striking left-lateral shear zone. These structures are the result of a transpressional deformation that initiated at least since the Eocene under ductile, syn-metamorphic (low-greenschist fades) conditions and progressively changed during the Oligocene-Early Miocene to brittle conditions with E-W striking reverse faults-thrusts and NNW-SSE striking right-lateral and NESW striking left-lateral strike-slip faults. This deformation waned in Middle Miocene changing to transtension with E- W striking, left-lateral strike-slip and NW-SE rightlateral oblique to normal faults. Since the Late Miocene an extensional regime dominates the area with the least principal stress axis (σ3) orientated NE-SW during Late Miocene - Pliocene andN-Sfrom Early Pleistocene -present


2020 ◽  
pp. SP505-2019-116
Author(s):  
Seishiro Furuyama ◽  
Tomoyuki Sato ◽  
Kohsaku Arai ◽  
Masanori Ozaki

AbstractThe Kanto Basin developed, starting c. 3 Ma, influenced by the subduction of the Philippine Sea plate and the Pacific plate. Sediments in this basin have influenced the geomorphology of the Kanto region. In the Boso Peninsula, located at the eastern edge of the Kanto Basin, uplift continues in what is called the Kashima–Boso uplift zone. Although the development of this uplift after the Late Pleistocene is well understood, there are few data from the Early to Middle Pleistocene. In this study, we investigated the offshore shelf area east of the Boso Peninsula using a high-resolution seismic reflection survey, and report new information on the geological structure and uplift processes in the area from the Early to Middle Pleistocene. We identified the Kujukuri-oki anticline and the Kujukuri-oki normal fault zone. The Kujukuri-oki anticline, more than 47 km long, is north–south striking and deforms the Kujukuri-oki Group. There are numerous normal faults with displacements of less than tens of metres spread widely in the survey area (Kujukuri-oki normal fault zone). These findings reveal that the Kujukuri-oki anticline uplifted during the end of the Early Pleistocene and attenuated during the Middle Pleistocene. This anticline comprised the axis of the Kashima–Boso uplift zone at the Boso Peninsula from the Early to Middle Pleistocene and the Boso Peninsula is located at the western limb of this anticline.


1983 ◽  
Vol 73 (3) ◽  
pp. 813-829
Author(s):  
P. Yi-Fa Huang ◽  
N. N. Biswas

abstract This paper describes the characteristics of the Rampart seismic zone by means of the aftershock sequence of the Rampart earthquake (ML = 6.8) which occurred in central Alaska on 29 October 1968. The magnitudes of the aftershocks ranged from about 1.6 to 4.4 which yielded a b value of 0.96 ± 0.09. The locations of the aftershocks outline a NNE-SSW trending aftershock zone about 50 km long which coincides with the offset of the Kaltag fault from the Victoria Creek fault. The rupture zone dips steeply (≈80°) to the west and extends from the surface to a depth of about 10 km. Fault plane solutions for a group of selected aftershocks, which occurred over a period of 22 days after the main shock, show simultaneous occurrences of strike-slip and normal faults. A comparison of the trends in seismicity between the neighboring areas shows that the Rampart seismic zone lies outside the area of underthrusting of the lithospheric plate in southcentral and central Alaska. The seismic zone outlined by the aftershock sequence appears to represent the formation of an intraplate fracture caused by regional northwest compression.


2021 ◽  
Author(s):  
Nipaporn (Nidnueng) Nakrong ◽  
Wim Spakman ◽  
Fangqin Chen ◽  
Gordon Lister

<p>Slab tearing in subducting plates is widely implicated in terms of the factors that control the evolution of the structural geology of the over-riding crust, here illustrated by interactions between the subducting Nazca plate and the overlying overthrust western continental margin of South America. We examine the different ways that structures above the bounding megathrusts are linked to the ripping and tearing of the subducting plate beneath, in particular focussed on the Andean orogeny at the Arica bend during the formation of the Bolivian orocline. We can create models for slab tearing by integrating seismotectonic analysis, seismic tomography, and morphotectonics. There are many features in the UU-P07 tomographic model that we cannot yet relate to the evolution of surface structure, for example, the gaps and tears beneath the Bolivian Orocline, or the separation of the detached slab we interpret as a paleo-segment of the Nazca plate, illustrating traces of an ancient subduction system. However, we can link the evolution of some surface structures to the growth of the giant kink of the Nazca slab that connects to the surface near the Arica bend. This may have driven strike-slip faulting with opposing sense-of-shear, northern south of the Bolivian Orocline. Megathrust rupture segments may be related to the polygonal kinked trace of the orogen, which is not at all a continuously curved arc. In this contribution, we relate the growth and accentuation of the Arica Bend to the evolution of the giant kink in the Nazca plate using a 4-D tectonic reconstruction.</p>


2018 ◽  
Vol 91 (1) ◽  
pp. 35-50 ◽  
Author(s):  
Inmaculada Menéndez ◽  
José Mangas ◽  
Esperança Tauler ◽  
Vidal Barrón ◽  
José Torrent ◽  
...  

AbstractThe island of Gran Canaria is regularly affected by dust falls due to its proximity to the Saharan desert. Climatic oscillations may affect the Saharan dust input to the island. Geochemical, mineralogical, and textural analysis was performed on a well-developed and representative early Pleistocene paleosol to examine Saharan dust contribution to Gran Canaria. Significant and variable Saharan dust content was identified in addition to weathering products such as iron oxides and clay minerals. Variations in quartz and iron oxide concentrations in the paleosol likely reflect different Saharan dust input in more/less-contrasted rhexistasic/biostatic climatic conditions. Linking the quartz content in Canarian soils, the Ingenio paleosol, and two Canarian loess-like deposits to different ages from the Quaternary, we hypothesized that the dust input should be lower (about 33–38%) throughout the early to middle Pleistocene than during the late Quaternary. The Saharan dust input to the Gran Canaria profile in the Pleistocene persisted in spite of climatic variations.


2004 ◽  
Vol 141 (5) ◽  
pp. 565-572 ◽  
Author(s):  
YUVAL BARTOV ◽  
AMIR SAGY

A newly discovered active small-scale pull-apart (Mor structure), located in the western part of the Dead Sea Basin, shows recent basin-parallel extension and strike-slip faulting, and offers a rare view of pull-apart internal structure. The Mor structure is bounded by N–S-trending strike-slip faults, and cross-cut by low-angle, E–W-trending normal faults. The geometry of this pull-apart suggests that displacement between the two stepped N–S strike-slip faults of the Mor structure is transferred by the extension associated with the normal faults. The continuing deformation in this structure is evident by the observation of at least three deformation episodes between 50 ka and present. The calculated sinistral slip-rate is 3.5 mm/yr over the last 30 000 years. This slip rate indicates that the Mor structure overlies the currently most active strike-slip fault within the western border of the Dead Sea pull-apart. The Mor structure is an example of a small pull-apart basin developed within a larger pull-apart. This type of hierarchy in pull-apart structures is an indication for their ongoing evolution.


2020 ◽  
Author(s):  
Gilles Rixhon ◽  
Didier L. Bourlès ◽  
Régis Braucher ◽  
Alexandre Peeters ◽  
Alain Demoulin

<p>Multi-level cave systems record the history of regional river incision in abandoned alluvium-filled phreatic passages which, mimicking fluvial terrace sequences, represent former phases of fluvial base-level stability. In this respect, cosmogenic burial dating of in cave-deposited alluvium (usually via the nuclide pair <sup>26</sup>Al/<sup>10</sup>Be) represents a suitable method to quantify the pace of long-term river incision. Here, we present a dataset of fifteen <sup>26</sup>Al/<sup>10</sup>Be burial ages measured in fluvial pebbles washed into a multi-level cave system developed in Devonian limestone of the uplifted Ardenne massif (eastern Belgium). The large and well-documented Chawresse system is located along the lower Ourthe valley (i.e. the main Ardennian tributary of the Meuse river) and spans altogether an elevation difference exceeding 120 m.</p><p>The depleted <sup>26</sup>Al/<sup>10</sup>Be ratios measured in four individual caves show two main outcomes. Firstly, computed burial ages ranging from ~0.2 to 3.3 Ma allows highlighting an acceleration by almost one order of magnitude of the incision rates during the first half of the Middle Pleistocene (from ~25 to ~160 m/Ma). Secondly, according to the relative elevation above the present-day floodplain of the sampled material in the Manants cave (<35 m), the four internally-consistent Early Pleistocene burial ages highlight an “anomalous” old speleogenesis in the framework of a gradual base-level lowering. They instead point to intra-karsting reworking of the sampled material in the topographically complex Manants cave. This in turn suggests an independent, long-lasting speleogenetic evolution of this specific cave, which differs from the <em>per descensum</em> model of speleogenesis generally acknowledged for the regional multi-level cave systems and their abandoned phreatic galleries. In addition to its classical use for inferring long-term incision rates, cosmogenic burial dating can thus contribute to better understand specific and complex speleogenetic evolution.</p>


2017 ◽  
Vol 43 (1) ◽  
pp. 289 ◽  
Author(s):  
E. Kokinou ◽  
E. Kamberis ◽  
A. Sarris ◽  
I. Tzanaki

Giouchta Mt. is located south of Heraklion city, in Crete. It is an N-S trending morphological asymmetric ridge, with steep western slope whilst the eastern slope represents a smoother relief, composed of Mesozoic limestone and Eocene- lower Oligocene flysch sediments of the Gavrovo -Tripolis zone. The present study focuses on the geological structure of Mt. Giouchta. Field mapping and tectonic analysis is performed for this purpose. The dominant structures are contractional in nature, deformed by normal faulting related to the extensional episodes initiated in Serravallian times. The strain pattern in the area is revealed from strain analysis. It is inferred that the orientation of the stress field in the area has changed several times: the N-S, stress field which was dominant during Late Serravallian times changed to NE-SW (in Late Serravallian? - Early Tortonian) and subsequently to WNW-ESE (Early to Middle Tortonian) to become NW-SE in Late Tortonian. This orientation changed also during the Quaternary times trending from NW-SE (Early Pleistocene) to ENE-WSW (Middle Pleistocene-Holocene). In addition to the above, surface soil samples were collected in the wider area of mount Giouchta and they were analyzed in order to determine the magnetic susceptibility. GIS techniques were used for mapping the spatial distribution of the geological features and the magnetic measurements on the topographic relief of the area. Statistical analysis techniques were also applied in order to investigate the relation of faulting and magnetic susceptibility. Maps representing the spatial distribution of the above measurements were created by using appropriate interpolation algorithms.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256090
Author(s):  
Paola Villa ◽  
Giovanni Boschian ◽  
Luca Pollarolo ◽  
Daniela Saccà ◽  
Fabrizio Marra ◽  
...  

The use of bone as raw material for implements is documented since the Early Pleistocene. Throughout the Early and Middle Pleistocene bone tool shaping was done by percussion flaking, the same technique used for knapping stone artifacts, although bone shaping was rare compared to stone tool flaking. Until recently the generally accepted idea was that early bone technology was essentially immediate and expedient, based on single-stage operations, using available bone fragments of large to medium size animals. Only Upper Paleolithic bone tools would involve several stages of manufacture with clear evidence of primary flaking or breaking of bone to produce the kind of fragments required for different kinds of tools. Our technological and taphonomic analysis of the bone assemblage of Castel di Guido, a Middle Pleistocene site in Italy, now dated by 40Ar/39Ar to about 400 ka, shows that this general idea is inexact. In spite of the fact that the number of bone bifaces at the site had been largely overestimated in previous publications, the number of verified, human-made bone tools is 98. This is the highest number of flaked bone tools made by pre-modern hominids published so far. Moreover the Castel di Guido bone assemblage is characterized by systematic production of standardized blanks (elephant diaphysis fragments) and clear diversity of tool types. Bone smoothers and intermediate pieces prove that some features of Aurignacian technology have roots that go beyond the late Mousterian, back to the Middle Pleistocene. Clearly the Castel di Guido hominids had done the first step in the process of increasing complexity of bone technology. We discuss the reasons why this innovation was not developed. The analysis of the lithic industry is done for comparison with the bone industry.


1982 ◽  
Vol 19 (10) ◽  
pp. 1974-1984 ◽  
Author(s):  
David J. W. Piper ◽  
William R. Normark

About 1000 km of single-channel seismic-reflection profiles from a 50 km × 100 km area on the upper Laurentian Fan shows no evidence of the large slumps interpreted by previous workers in this area. Our detailed profile grid indicates that slump-like masses are commonly in depositional continuity with definite autochthonous sediments, and surfaces previously interpreted as slide planes are either facies changes or the result of valley-wall erosion. Only a few small slump blocks of relatively consolidated sediment are found on the uppermost fan. Acoustic-facies distribution shows a single Early (?) Pleistocene fan valley crossing the northeast part of the survey area with thick overbank sediments to the southwest. In the middle (?) Pleistocene this valley became incised. Its upper reaches then ceased to receive sediment, and a new valley was cut extending southward from the upper slope and intercepting the lower reaches of the old fan valley. This channel diversion was probably related either to the glacial excavation of the Laurentian Channel or to a major slump scar that formed east of the survey area. Most of the old abandoned channel was plugged by overbank deposits from the new master channel. Two other valleys farther west also developed at this time or somewhat earlier. In Late Pleistocene time, all three valleys were incised and more than 1 km of sedimentary material was stripped from much of the uppermost part of the fan, probably as a result of headward erosion of submarine canyons and general thalweg lowering.


Sign in / Sign up

Export Citation Format

Share Document