Yet another in-situ cosmogenic 10-Be local production rate for the British Isles : Llyn Arenig Fach, North Wales

Author(s):  
David Fink ◽  
Philip Hughes ◽  
Reka Fulop ◽  
Klaus Wilcken ◽  
Patrick Adams ◽  
...  

<p>Cosmogenic production rates (PRs) are the essential conversion factor between AMS cosmogenic concentrations and absolute exposure ages. The accuracy of cosmogenic glacial chronologies and reliability in their comparison to other plaeoclimate systems  is largely contingent on the precision and accuracy of the adopted production rate. This is particularly critical in determining past glacial geochronologies at the scale of millennial temporal resolution. Most PR calibrations are carried out at deglaciation sites where radiocarbon provides the independent chronometric control usually based on calibrated 14C ages in basal sediments or varves  from lake or bog cores which is assumed to represent the minimum age for glacial retreat. Under these conditions PRs should be considered as maximum-limiting values. Given that today most AMS facilities can deliver 10-Be, 26-Al and 36-Cl data with analytical errors less than 2%, the accuracy of a PR for a given scaling method (ie transfer function of the site-specific production rate to a reference sea-level high latitude (SLHL) PR) remains largely dependent  on the error in the independent chronology and accuracy of AMS standards. The history over the past 20 years of the ever-changing value of  SLHL 10-Be cosmogenic spallation PRs  with a continual decreasing value from initial estimates of about 7 atoms/g/a to the current  ‘accepted ‘ value of ~4 atoms/g/a,   is an interesting story in itself and demonstrates the complexity in such determinations.  </p><p>Today there are both global (average) SLHL PRs and also regional-specific PR values (referenced to SLHL). For the British Isles, there are a number of 10-Be ‘British Isles’ choices that, for the Lm scaling scheme, range between 3.92±0.11  atoms/g/a  (Putnam et al., QG, v50, 2019) to 4.41±0.25 atoms/g/a (Small et al., JQS, v30, 2015). This range in 10-Be spallation PRs has recently raised some debate and challenges for the assumed extent and timing of the local-LGM and demise of the British Ice Sheet. This work provides a new  British Isles site specific 10-Be PR from the  Arenig Mountains in North Wales. We have measured 10-Be concentrations in 13 selected moraine boulders that are tentatively mapped as outer and inner Younger Dryas deglacial deposits hugging a cirque lake,  Llyn Arenig Fach,  just below the head wall  at  Arenig Fach.   Radiocarbon dating of basal sediments from a number of intermorainal core bogs has provided independent age control.  We will present our results and compare them to the current collection of other British Isles 10-Be production rates.  </p>

2021 ◽  
Author(s):  
David Fink ◽  
Philip Hughes ◽  
Reka Fulop ◽  
Klaus Wilcken ◽  
Patrick Adams ◽  
...  

<p>Cosmogenic production rates (PRs) are the essential conversion factor between AMS cosmogenic concentrations and absolute exposure ages. The accuracy of cosmogenic glacial chronologies and reliability in their comparison to other paleoclimate systems  is largely contingent on the precision and accuracy of the adopted production rate. This is particularly critical in determining past glacial geochronologies at the scale of millennial temporal resolution. Most PR calibrations are carried out at deglaciation sites where radiocarbon provides the independent chronometric control usually based on 14C ages in basal sediments or varves from lake or bog cores which is assumed to represent the minimum age for glacial retreat. Under these conditions and hence provide PRs as maximum values. Given that today most AMS facilities can deliver 10-Be, 26-Al and 36-Cl data with total analytical errors less than 2% ( for 10 ka exposure), the precision of a PR remains largely dependent  on the error in the independent chronology and accuracy of AMS standards. The history over the past 20 years of the ever-decreasing value of  SLHL 10-Be cosmogenic spallation PRs   from initial estimates of about 7 atoms/g/a to the current  ‘accepted‘ (global average) values of ~4 atoms/g/a,   is an interesting story in itself and demonstrates the complexity in such determinations.  </p><p>Over the past few years new web-based calculators are now available to calculate uniformly new production rates from either new data or combinations of any set of published data (CRONUS-Earth, CRONUS-UW, CosmoCalc, ICE-D, CREp). This delivers a means by which new production rates can be seamlessly integrated and compared using identical constants, methods and statistics that were used to generate (currently accepted) global average or regional production rates.</p><p> For the British Isles, there are a number of 10-Be reference sites that give PRs (Lm scheme) between 3.89±3%  atoms/g/a  (Putnam, QG, v50, 2019) to 4.20±1% atoms/g/a (Small, JQS, v30, 2015) which convert to 3.95 and 4.28, respectively, using datasets in the ICE-D calculator). This difference in 10-Be spallation PRs has recently raised some debate and challenges for the timing of the local-LGM and demise of the British Ice Sheet. This work provides a new  British Isles site specific 10Be PR from the  Arenig Mountains in North Wales where radiocarbon dating of basal sediments from a bog core associated with a series of nearby cirque moraines provides independent age control.  Similarly in the South Island of New Zealand, the current accepted 10Be PR is 3.76±2% (Putnam, QG 2009; converts to 3.94±1% using ICE-D) and is the only available PR that is used for these southern hemispheric glacial sites. This work provides a new Australasian site specific 10Be PR from Arthurs Pass retreat moraines where radiocarbon dating of basal sediments from three cores extracted from a bog impounded by the moraine provides independent age control. </p>


2021 ◽  
Author(s):  
◽  
Julia Anne Collins

<p>Cosmogenic nuclides are an important tool in quantifying many Earth-surface processes. Beryllium-10 (¹⁰Be) is commonly extracted out of the mineral quartz; however many landscapes lack quartz bearing rocks. In order to establish a new chronometer based on ¹⁰Be in pyroxene for use in New Zealand and Antarctica, it is necessary to verify cleaning protocols and determine a local production rate. In this study, I have tested and modified an existing pyroxene decontamination procedure in order to further develop the use of ¹⁰Be in pyroxene as a chronometer. This method successfully removes the meteoric component of ¹⁰Be in pyroxene, allowing only the concentration of in situ produced ¹⁰Be to be measured. Additionally, production rates for ¹⁰Be in pyroxene have been determined empirically for New Zealand using cross-calibration with measured ³He concentrations and an independent radiocarbon age of the Murimotu debris avalanche in the central North Island, New Zealand of 10.6 ± 1.1 ka. Theoretical ¹⁰Be pyroxene production rates were also determined, based on the composition of the Murimotu pyroxene. The best estimate for the 10Be pyroxene production rate is 3.4 ± 0.8 atoms g⁻¹ yr⁻¹ at sea-level high latitude, which was determined via cross-calibration with the radiocarbon age for the deposit. This work shows that production rates for ¹⁰Be in pyroxene are both empirically and theoretically 8-27% lower than in quartz. The ³He/¹⁰Be ratio in the Murimotu pyroxene is 34.5 ± 9.9; this is indistinguishable from global ³He-pyroxene/¹⁰Be-quartz production ratios.  In a case study surface exposure ages were determined for bedrock samples and cobble erratics collected in a vertical transect on Mount Gran, Antarctica, by applying the aforementioned ¹⁰Be pyroxene decontamination procedure and radiocarbon derived production rates. A chronology for ice surface lowering was obtained for the adjacent Mackay Glacier, indicating the ice surface lowered approximately 60 m during a relatively rapid episode of thinning which occurred between ~13.5 ka and 11 ka.  This thesis presents a successful test of decontamination procedures, new production rates, and an example application, showing the promise of ¹⁰Be in pyroxene as a chronometer. The development of ¹⁰Be in pyroxene allows environments without quartz-bearing rocks to be dated using this widely used nuclide. The pairing of ¹⁰Be with ³He in pyroxene would allow complex exposure histories to be determined, expanding the application.</p>


2021 ◽  
Author(s):  
◽  
Julia Anne Collins

<p>Cosmogenic nuclides are an important tool in quantifying many Earth-surface processes. Beryllium-10 (¹⁰Be) is commonly extracted out of the mineral quartz; however many landscapes lack quartz bearing rocks. In order to establish a new chronometer based on ¹⁰Be in pyroxene for use in New Zealand and Antarctica, it is necessary to verify cleaning protocols and determine a local production rate. In this study, I have tested and modified an existing pyroxene decontamination procedure in order to further develop the use of ¹⁰Be in pyroxene as a chronometer. This method successfully removes the meteoric component of ¹⁰Be in pyroxene, allowing only the concentration of in situ produced ¹⁰Be to be measured. Additionally, production rates for ¹⁰Be in pyroxene have been determined empirically for New Zealand using cross-calibration with measured ³He concentrations and an independent radiocarbon age of the Murimotu debris avalanche in the central North Island, New Zealand of 10.6 ± 1.1 ka. Theoretical ¹⁰Be pyroxene production rates were also determined, based on the composition of the Murimotu pyroxene. The best estimate for the 10Be pyroxene production rate is 3.4 ± 0.8 atoms g⁻¹ yr⁻¹ at sea-level high latitude, which was determined via cross-calibration with the radiocarbon age for the deposit. This work shows that production rates for ¹⁰Be in pyroxene are both empirically and theoretically 8-27% lower than in quartz. The ³He/¹⁰Be ratio in the Murimotu pyroxene is 34.5 ± 9.9; this is indistinguishable from global ³He-pyroxene/¹⁰Be-quartz production ratios.  In a case study surface exposure ages were determined for bedrock samples and cobble erratics collected in a vertical transect on Mount Gran, Antarctica, by applying the aforementioned ¹⁰Be pyroxene decontamination procedure and radiocarbon derived production rates. A chronology for ice surface lowering was obtained for the adjacent Mackay Glacier, indicating the ice surface lowered approximately 60 m during a relatively rapid episode of thinning which occurred between ~13.5 ka and 11 ka.  This thesis presents a successful test of decontamination procedures, new production rates, and an example application, showing the promise of ¹⁰Be in pyroxene as a chronometer. The development of ¹⁰Be in pyroxene allows environments without quartz-bearing rocks to be dated using this widely used nuclide. The pairing of ¹⁰Be with ³He in pyroxene would allow complex exposure histories to be determined, expanding the application.</p>


1987 ◽  
Vol 44 (11) ◽  
pp. 2009-2012 ◽  
Author(s):  
Jeffrey A. Runge

A method for determining Calanus egg production rates from preserved, net-tow samples is proposed. In the sea off Nova Scotia, in situ egg production rates (eggs per female per day) of Calanus finmarchicus are significantly related to an index of gonadal development in preserved females. This relationship could be used in combination with data on female abundance to estimate daily production of eggs in the water column. The method is illustrated with data from a transect across Browns Bank.


Radiocarbon ◽  
2004 ◽  
Vol 46 (1) ◽  
pp. 445-454 ◽  
Author(s):  
CD Shen ◽  
J Beer ◽  
S Ivy-Ochs ◽  
Y Sun ◽  
W Yi ◽  
...  

Concentrations of organic carbon, carbon isotopes (13C and 14C), atmospheric 10Be in soil, and in situ 10Be in bedrock and weathering rock were determined in a study of a profile of a grassland slope at the Heshan Hilly Land Interdisciplinary Experimental Station, Chinese Academy of Sciences, in Guangdong Province, China. A good linear relationship between depth and the 14C apparent age of the organic carbon demonstrates that the rock weathering process and the accumulation process of organic matter in the slope are relatively stable. Both 14C and 10Be results show that about 34% of soil in the grassland slope has been eroded during the past 3800 yr. The 10Be results for interstitial soil from weathered rocks show that the 90-cm-thick weathering rock layer above the bedrock has evolved over a period of 1.36 Myr. The concentrations of in situ 10Be in the weathered rock and bedrock are 10.7 × 104 atoms/g and 8.31 × 104 atoms/g, respectively. The weathering rate of the bedrock, equivalent to the soil production rate, was estimated at 8.8 × 10-4 cm/yr, and the exposure ages of the weathered rock and the bedrock were 72 kyr and 230 kyr, respectively.


1972 ◽  
Vol 70 (1) ◽  
pp. 89-96 ◽  
Author(s):  
M. J. Levell

ABSTRACT Five normal subjects were given [14C] cortisol in the morning and [3H] cortisol in the evening, in both cases by mouth. The excretion of radioactivity in tetrahydrocortisol (THF) and tetrahydrocortisone (THE) was measured by a modified form of reverse isotope dilution. In 2 subjects, the ratio of isotopic THF/isotopic THE was higher after the evening dose than after the morning dose. In 1 subject the ratio decreased. In 2 subjects it did not change. Cortisol production rates calculated from THF were usually higher than those calculated from THE. The observed variations of metabolism were only a contributory factor to these discrepancies.


Author(s):  
Jian-Shing Luo ◽  
Hsiu Ting Lee

Abstract Several methods are used to invert samples 180 deg in a dual beam focused ion beam (FIB) system for backside milling by a specific in-situ lift out system or stages. However, most of those methods occupied too much time on FIB systems or requires a specific in-situ lift out system. This paper provides a novel transmission electron microscopy (TEM) sample preparation method to eliminate the curtain effect completely by a combination of backside milling and sample dicing with low cost and less FIB time. The procedures of the TEM pre-thinned sample preparation method using a combination of sample dicing and backside milling are described step by step. From the analysis results, the method has applied successfully to eliminate the curtain effect of dual beam FIB TEM samples for both random and site specific addresses.


2006 ◽  
Vol 291 (6) ◽  
pp. F1123-F1132 ◽  
Author(s):  
James J. De Yoreo ◽  
S. Roger Qiu ◽  
John R. Hoyer

Calcium oxalate monohydrate (COM) is the primary constituent of the majority of renal stones. Osteopontin (OPN), an aspartic acid-rich urinary protein, and citrate, a much smaller molecule, are potent inhibitors of COM crystallization at levels present in normal urine. Current concepts of the role of site-specific interactions in crystallization derived from studies of biomineralization are reviewed to provide a context for understanding modulation of COM growth at a molecular level. Results from in situ atomic force microscopy (AFM) analyses of the effects of citrate and OPN on growth verified the critical role of site-specific interactions between these growth modulators and individual steps on COM crystal surfaces. Molecular modeling investigations of interactions of citrate with steps and faces on COM crystal surfaces provided links between the stereochemistry of interaction and the binding energy levels that underlie mechanisms of growth modification and changes in overall crystal morphology. The combination of in situ AFM and molecular modeling provides new knowledge that will aid rationale design of therapeutic agents for inhibition of stone formation.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Carlos E. Ganade ◽  
Pierre Lanari ◽  
Daniela Rubatto ◽  
Joerg Hermann ◽  
Roberto F. Weinberg ◽  
...  

AbstractAbove subduction zones, magma production rate and crustal generation can increase by an order of magnitude during narrow time intervals known as magmatic flare-ups. However, the consequences of these events in the deep arc environment remain poorly understood. Here we use petrological and in-situ zircon dating techniques to investigate the root of a continental arc within the collisional West Gondwana Orogen that is now exposed in the Kabyé Massif, Togo. We show that gabbros intruded 670 million years ago at 20–25 km depth were transformed to eclogites by 620 million years ago at 65–70 km depth. This was coeval with extensive magmatism at 20–40 km depth, indicative of a flare-up event which peaked just prior to the subduction of the continental margin. We propose that increased H2O flux from subduction of serpentinized mantle in the hyper-extended margin of the approaching continent was responsible for the increased magma productivity and crustal thickening.


Sign in / Sign up

Export Citation Format

Share Document