scholarly journals Flood-based Farming as Affected by Hydrological Deficit in the Semiarid Lowlands of Northern Ethiopia

Author(s):  
Emnet Negash ◽  
Jan Nyssen ◽  
Girmay Gebresamuel ◽  
Tesfa-alem Embaye ◽  
Alick Nguvulu ◽  
...  

<p>Agriculture remains the dominant source of food production and the livelihood foundation for majority of the rural poor in the sub-Saharan Africa, including Ethiopia. Access to agricultural-water is, however, a limitation hindering crop productivity and end food insecurity in the drylands. In rain-deficit lowlands such as in the Raya-valley, flood-based farming is a means of improving crop production. Such spate irrigation systems grow in importance; though the effects of headwater hydrological deficit on flood-farming systems are lacking evidence. The present work investigates the impacts of headwater hydrological deficit on spate-irrigated agriculture in Tsge’a spate systems. Canal length and area of spate-irrigated agriculture along Guguf river for the 1980s and 2010s were tracked using Global Positioning System; while runoff trend analysed using linear regression. Annual volume of flash-flood shrunk by 7.36x10<sup>6</sup> m<sup>3</sup>. This is mainly due to changing climate and increasing water retention by the soil and humans at the escarpment. As a result, length of canals and area of spate-based farms downstream declined by 1.37 km (35%) and 1540 ha (57.5%), respectively, only in three decades time. This corresponds to an average withdrawal of -44 ha yr<sup>-1</sup>. A 1x10<sup>6</sup> m<sup>3</sup> decline in flash-flood caused a 366.4 ha decline in spate-based farms. Moreover, farm fields located next to the river course are less affected, as compared to farms on the tail of the scheme. If the current trend continues, there is likely a high risk that the remaining farms currently receiving flood may run out of spate systems. Therefore, flood management technologies are needed to optimize the efficiency of soil moisture in the spate system.</p><p>The abstract is based on Negash, E., Gebresamuel, G., Embaye, T., Nguvulu, A., Meaza, H., Gebrehiwot, M., Demisse, B., Gebreyohannes, T., Nyssen, J., & Zenebe, A. (2020). Impact of headwater hydrological deficit on the downstream flood-based farming system in northern Ethiopia. <em>Irrigation and Drainage</em>, In Press.</p>

The farming system in West Bengal is being shifted by integration between the set of cash crops and the main food harvest process. This change in diversified farming systems, where smallholders have a production base in rice can complement production; affect technical efficiency and farm performance. The goal of this study was to investigate the status of crop diversification on smallholders in West Bengal. First, crop diversification regions were developed in West Bengal based on the Herfindahl index, which were categorized into three regions. Three sample districts were studied separately at the block level, and 915 small farmers from 41 sample villages of 9 sample blocks were interviewed through a good structure questionnaire for field studies from the sample districts. West Bengal was gradually moving towards multiple crop production. Furthermore, increasing rice production reduced the marginal use of inputs for the production of other crops. Farming and other vital factors such as HYVs area to GCA, average holding size and per capita income in some districts of West Bengal can be identified as determinants of crop diversification.


2021 ◽  
Vol 13 (4) ◽  
pp. 1926 ◽  
Author(s):  
Shiferaw Feleke ◽  
Steven Michael Cole ◽  
Haruna Sekabira ◽  
Rousseau Djouaka ◽  
Victor Manyong

The International Institute of Tropical Agriculture (IITA) has applied the concept of ‘circular bioeconomy’ to design solutions to address the degradation of natural resources, nutrient-depleted farming systems, hunger, and poverty in sub-Saharan Africa (SSA). Over the past decade, IITA has implemented ten circular bioeconomy focused research for development (R4D) interventions in several countries in the region. This article aims to assess the contributions of IITA’s circular bioeconomy focused innovations towards economic, social, and environmental outcomes using the outcome tracking approach, and identify areas for strengthening existing circular bioeconomy R4D interventions using the gap analysis method. Data used for the study came from secondary sources available in the public domain. Results indicate that IITA’s circular bioeconomy interventions led to ten technological innovations (bio-products) that translated into five economic, social, and environmental outcomes, including crop productivity, food security, resource use efficiency, job creation, and reduction in greenhouse gas emissions. Our gap analysis identified eight gaps leading to a portfolio of five actions needed to enhance the role of circular bioeconomy in SSA. The results showcase the utility of integrating a circular bioeconomy approach in R4D work, especially how using such an approach can lead to significant economic, social, and environmental outcomes. The evidence presented can help inform the development of a framework to guide circular bioeconomy R4D at IITA and other research institutes working in SSA. Generating a body of evidence on what works, including the institutional factors that create enabling environments for circular bioeconomy approaches to thrive, is necessary for governments and donors to support circular bioeconomy research that will help solve some of the most pressing challenges in SSA as populations grow and generate more waste, thus exacerbating a changing climate using the linear economy model.


2014 ◽  
Vol 65 (10) ◽  
pp. 945 ◽  
Author(s):  
Rick S. Llewellyn ◽  
Michael J. Robertson ◽  
Richard C. Hayes ◽  
David Ferris ◽  
Katrien Descheemaeker ◽  
...  

Developing new and improved grazing systems for crop–livestock farms where crop production is the major driver of farm management decisions presents a unique research and development challenge. In southern Australia, a substantial proportion of animal production from grazing comes from regions and farms where cropping is the major enterprise. In this paper, we describe a multi-disciplinary farming-systems research approach (EverCrop) aimed at improving farm profitability, risk management and environmental impacts through the development and integration of new grazing options with an emphasis on perennial species. It has been used to analyse and target new opportunities for farmers to benefit from perennial species across dry Mediterranean-type and temperate regions of southern Australia. It integrates field experimentation, on-farm trialling, farmer participatory research, soil–plant–climate biophysical modelling, whole-farm bioeconomic analysis and evaluations of adoptability. Multi-functional roles for summer-active grasses with winter cropping, integration of forage shrubs and establishment of new mixes of perennial grasses in crop rotations to improve farming system performance are identified, along with an analysis of factors likely to affect rate of uptake by farmers.


Agriculture is the most important sector of Indian Economy. Indian agriculture sector provides employment to 50% of the countries workforce. India is the world's largest producer of pulses, rice, wheat, sugarcane, pomegranates etc. The current scenario of agriculture business in India is not up to the mark as expected. There are number of reasons which causes less yield in the agriculture such as unpredictable environmental conditions, excess use of fertilizers (cost is increasing day by day), increased draught frequency and its severity, increasing labor rate, less difference between the income and expenditure, ripeness of soil, influenced suspensions, non-appropriate water management, diseases on crops, invasion of animals and so on. There is need to find the ways which makes the use of Information Technology (IT) concepts and tools wherever possible for increasing automation in the agriculture business, which results in the efficient and effective outcome of agriculture i.e. higher yields. The production efficiency can be increased significantly with technological advancement in agriculture. Internet of Things (IoT) is a novel design approach for precision farming. Farming has seen number of technological transformations in the last decade. By using various smart agriculture gadgets, farmers have gained better control over the process of raising the growing crops and livestocks. One of the major issues which cause fewer yields is the soil health. This paper mainly analyses/reviews the problems related to the soil health (soil fertility), which is a main obstacle in the crop production. Also this study focuses on the use of IoT applications in precision farming. It gives an overview of the relation between crop productivity and soil health


2020 ◽  
Vol 5 (2) ◽  
pp. 127-132
Author(s):  
Yuriansyah Yuriansyah ◽  
Dulbari Dulbari ◽  
Hery Sutrisno ◽  
Arief Maksum

Excessive use of inorganic chemicals results in adverse impacts on land and plants. In the midst of the community, there is anxiety about the high content of pesticide residues in agricultural products. There is a need to develop alternative farming systems that are able to produce quantities and quality of healthy products in a sustainable manner. One agricultural system that supports the concept is the organic farming system. The basic principles of organic farming are: (1) Keeping the ecosystem healthy, (2) Applying the principle of efficiency to the cultivation system, (3) Conducting production activities with the concept of sustainable agriculture, (4) Producing pesticide-free products, and (6) Maintaining environmental sustainability. Food Crop Production Study Program Lampung State Polytechnic makes Organic Agriculture as one of the leading competencies for its graduates. The establishment of the Organic Agriculture Business Unit on campus will increase student competencies, foster entrepreneurship, be a place for competency internships, and as an independent source of income.


2006 ◽  
Vol 42 (3) ◽  
pp. 259-287 ◽  
Author(s):  
MARY TIFFEN

During the past two decades or so, rural population in Africa has increased slowly while urban population has grown dramatically. The hugely increased urban demand for cereals and pulses (which produce crop residues for livestock) and for livestock products is now the main force stimulating mixed farming systems in the semi-arid and sub-humid areas of sub-Saharan Africa. Grazing land has diminished, crop residues are becoming a more important element in raising livestock and fattening penned livestock has become profitable. The changes in land use, land tenure and the shift of livestock raising southwards in West Africa are illustrated. Farmers' adaptation to rapidly changing markets for their products and the factors of production are illustrated with examples from Senegal, Nigeria, Niger, and, by way of contrast, Kenya. The main challenges this sets to agricultural scientists are described. The livestock element in mixed farming system now requires careful economic analysis and participative research if scientists are to meet the evolving needs of farming as the urban sector enlarges.


2021 ◽  
Author(s):  
Arab Msume ◽  
Giulio Castelli ◽  
Faidess Mwale

<p>Agriculture is critical for human welfare and economic growth in Sub-Saharan Africa (SSA). However, especially rainfed agriculture remains vulnerable to the impacts of climate change in the region. This has generated increasing interest in practices such as Flood Based Farming Systems (FBFS) which enable turning flood water into an opportunity for crop production for smallholder farmers living in flood plains. Despite this interest, there is limited knowledge about farmers’ preference in terms of choices about a specific FBFS and therefore about which specific FBFS needs improvements for realizing its full benefits. The present study characterizes FBFS in Balaka District, Eastern Malawi, in order to develop a pilot approach for gaining knowledge and insights about farmers’ preferences. Data were collected from a sample of 398 questionnaires, direct observations, focus group discussions and key informant interviews, and they were analyzed through SPSS. Results show that Flood Recession Agriculture (FRA) was predominantly practiced (54%), together with other FBFS such as Depression Agriculture (DA), Spate Irrigation (SI) and Dug Outs (DO). Low capital investment and low level of awareness of farmers were referred to be critical for FRA adoption with (p<0.00003) and (p<0.004) respectively. Therefore, investing on FRA, which has already proven to be used in the area, could be a key to improve food security in the area. </p>


Author(s):  
Magnus Jirström ◽  
Maria Archila Bustos ◽  
Sarah Alobo Loison

This chapter provides a broad descriptive background of central aspects of smallholder agriculture in six countries in sub-Saharan Africa (SSA). It offers an up-to-date picture of the current trends of crop production, area productivity, levels of commercialization, and sources of cash incomes among 2,500 farming households. Structured around smallholder production, commercialization, and diversification in the period 2002–15, the chapter points on the one hand at persistent challenges such as low crop yields, low levels of output per farm, and a high degree of subsistence farming, and on the other hand at positive change over time in terms of growth in crop production and increasing levels of commercialization. It points at large variations not only between countries and time periods but also at the village levels, where gaps in crop productivity between farms remain large. Implicitly it points at the potential yet to be exploited in the SSA smallholder sector.


2015 ◽  
Vol 52 (2) ◽  
pp. 165-187 ◽  
Author(s):  
TESFAY ARAYA ◽  
JAN NYSSEN ◽  
BRAM GOVAERTS ◽  
FRÉDÉRIC BAUDRON ◽  
LOUISE CARPENTIER ◽  
...  

SUMMARYLong-term in situ soil and water conservation experiments are rare in sub-Saharan Africa, particularly in Eastern Africa. A long-term experiment was conducted (2005–2013) on a Vertisol to quantify the impacts of resource-conserving agriculture (RCA) on runoff, soil loss, soil fertility and crop productivity and economic profitability in northern Ethiopia. Two RCA practices were developed from traditional furrow tillage practices: (i) derdero+ (DER+) and terwah+ (TER+). DER+ is a furrow and permanent raised bed planting system, tilled once at planting time by refreshing the furrow and 30% of crop residue is retained. TER+ is ploughed once at planting, furrows are made at 1.5 m intervals and 30% crop residue is retained. The third treatment was a conventional tillage (CT) with a minimum of three tillage operations and complete removal of crop residues. Wheat, teff, barley and grass pea crops were grown in rotation. Runoff, and soil and nutrient loss were measured in plastic sheet-lined collector trenches. Significantly different (P < 0.05) runoff coefficients (%) and soil losses (t ha−1) averaged over 9 yrs were 14 and 3, 22 and 11 and 30 and 17 for DER+, TER+ and CT, respectively. Significant improvements in crop yield and gross margin were observed after a period of three years of cropping This study demonstrated that RCA systems in semi-arid agro-ecosystems constitute a field rainwater conservation and soil fertility improvement strategy that enhances crop productivity and economic profitability. Adoption of RCA systems (DER+ and TER+) in the study area requires further work to improve smallholder farmers’ awareness on benefits, to guarantee high standards during implementation and to design appropriate weed management strategies.


2019 ◽  
Vol 71 (2) ◽  
pp. 632-641 ◽  
Author(s):  
Zachary P Stewart ◽  
Gary M Pierzynski ◽  
B Jan Middendorf ◽  
P V Vara Prasad

Abstract Soil fertility provides the foundation for nutritious food production and resilient and sustainable livelihoods. A comprehensive survey and summit meeting were conducted with the aims of understanding barriers to enhancing soil fertility in sub-Saharan Africa and providing evidence-based recommendations. The focus regions were West Africa, East Africa, the Great Lakes region, and Ethiopia. Overall recommendations were developed with four emerging themes: (1) strengthening inorganic fertilizer-based systems, (2) access to and use of quality organic inputs, (3) capacity building along the entire knowledge-transfer value chain, and (4) strengthening farming systems research and development across biophysical and socio-economic factors. The evidence-based process and methodology for prioritizing these recommendations makes these findings useful for setting out action plans for future investments and strategies. Access to inorganic fertilizer, its use, and related implementation issues were prominent considerations; nevertheless, biophysical and socio-economic barriers and solutions were identified as equally important to building soil fertility and natural resources. Soil management initiatives should focus on providing holistic solutions covering both biophysical and socio-economic aspects along the entire value chain of actors and creating an enabling environment for adoption. A broader view of soil fertility improvement using all available options including both inorganic and organic sources of nutrients and farming system approaches are highly recommended.


Sign in / Sign up

Export Citation Format

Share Document