Timing and pacing of middle to late Miocene intensification of the Indian Ocean-Atmospheric circulation system

Author(s):  
Gerald Auer ◽  
Beth Christensen ◽  
Or Bialik ◽  
Nanako Ogawa ◽  
Ryo Yamaoka ◽  
...  

<p>A recent biostratigraphic re-evaluation of Ocean Drilling Program (ODP) Site 722 (Bialik et al., accepted, Paleoceanogr. and Paleocl.) provides new insights into the history of monsoon driven upwelling in the Arabian Sea between 15 and 8.5 Ma. They suggest the modern monsoon was only established after tectonic preconditioning, linked to the uplift of the Himalayas, closure of the Tethyan Seaway, and the inception of Indonesian Throughflow restriction. But the requisite topography for the Indian monsoon was already in place by at least the late early Miocene which suggests another driver. However, as northern hemisphere latitudinal heat gradients continued to be shallower than modern throughout the Miocene, steepening southern hemisphere gradients during the middle Miocene glaciation of Antarctica ~14.8 Ma (Pound et al., 2012, Earth-Sci. Rev., 112) may have played an important role in pacing the monsoon system during the middle to late Miocene.</p><p>Here we further explore these findings by using recently acquired X-ray fluorescence (XRF) core scanning data from two additional ODP sites located in the central (Site 707) and southern (Site 752) Indian Ocean. We trace the timing and pacing of these environmental changes along a cross hemispheric transect within key areas of the larger Indian Ocean-Atmospheric system: (1) the monsoonal upwelling regions along the Oman Margin (Site 722); (2) the Somali/Findlater jets (Site 707); and (3) the high-pressure zone in the southern horse latitudes (Site 752).</p><p>Using updated age constraints at all sites, we show that the intensification of upwelling at Site 722 is tightly linked to climatic and oceanographic changes in the southern high latitudes (e.g., Groeneveld et al., 2017; Sci. Adv.). This close co-evolution of southern hemisphere climatic shifts and monsoon dynamics hints at a strong contribution of increasing southern hemisphere thermal gradients on the middle to late Miocene evolution of the Indian Ocean circulation system and Indian monsoon dynamics. Our findings thus re-emphasize the Indian summer monsoon as the result of a complex cross-hemispheric ocean-atmospheric system spanning the Indo-Pacific (e.g., Gadgil, 2018, J. Earth Syst. Sci., 127). We postulate that the Indian Ocean-Atmospheric system experienced a gradual intensification that began after the Middle Miocene Climatic Optimum with Antarctic Ice Sheet expansion. These changes then culminated in a synchronous shift ~11 Ma during the Ser4/Tor1 sea level lowstand (Haq et al., 1987; Science, 235). Future chrono-, chemo- and cyclostratigraphic work at ODP Sites 707 and 752 will further help to constrain the timing of these events, and fully place them in the context of the global climatic evolution during the Miocene.</p>

2015 ◽  
Vol 11 (3) ◽  
pp. 2121-2157 ◽  
Author(s):  
G. D. Sottile ◽  
M. E. Echeverria ◽  
M. V. Mancini ◽  
M. M. Bianchi ◽  
M. A. Marcos ◽  
...  

Abstract. The Southern Hemisphere Westerly Winds (SWW) constitute an important zonal circulation system that dominates the dynamics of Southern Hemisphere mid-latitude climate. Little is known about climatic changes in the Southern South America in comparison to the Northern Hemisphere due to the low density of proxy records, and adequate chronology and sampling resolution to address environmental changes of the last 2000 years. Since 2009, new pollen and charcoal records from bog and lakes in northern and southern Patagonia at the east side of the Andes have been published with an adequate calibration of pollen assemblages related to modern vegetation and ecological behaviour. In this work we improve the chronological control of some eastern Andean previously published sequences and integrate pollen and charcoal dataset available east of the Andes to interpret possible environmental and SWW variability at centennial time scales. Through the analysis of modern and past hydric balance dynamics we compare these scenarios with other western Andean SWW sensitive proxy records for the last 2000 years. Due to the distinct precipitation regimes that exist between Northern (40–45° S) and Southern Patagonia (48–52° S) pollen sites locations, shifts on latitudinal and strength of the SWW results in large changes on hydric availability on forest and steppe communities. Therefore, we can interpret fossil pollen dataset as changes on paleohydric balance at every single site by the construction of paleohydric indices and comparison to charcoal records during the last 2000 cal yrs BP. Our composite pollen-based Northern and Southern Patagonia indices can be interpreted as changes in latitudinal variation and intensity of the SWW respectively. Dataset integration suggest poleward SWW between 2000 and 750 cal yrs BP and northward-weaker SWW during the Little Ice Age (750–200 cal yrs BP). These SWW variations are synchronous to Patagonian fire activity major shifts. We found an in phase fire regime (in terms of timing of biomass burning) between northern Patagonia Monte shrubland and Southern Patagonia steppe environments. Conversely, there is an antiphase fire regime between Northern and Southern Patagonia forest and forest-steppe ecotone environments. SWW variability may be associated to ENSO variability especially during the last millennia. For the last 200 cal yrs BP we can concluded that the SWW belt were more intense and poleward than the previous interval. Our composite pollen-based SWW indices show the potential of pollen dataset integration to improve the understanding of paleohydric variability especially for the last 2000 millennial in Patagonia.


2021 ◽  
Author(s):  
Lian-Yi Zhang ◽  
Yan Du ◽  
Wenju Cai ◽  
Zesheng Chen ◽  
Tomoki Tozuka ◽  
...  

<p>This study identifies a new triggering mechanism of the Indian Ocean Dipole (IOD) from the Southern Hemisphere. This mechanism is independent from the El Niño/Southern Oscillation (ENSO) and tends to induce the IOD before its canonical peak season. The joint effects of this mechanism and ENSO may explain different lifetimes and strengths of the IOD. During its positive phase, development of sea surface temperature cold anomalies commences in the southern Indian Ocean, accompanied by an anomalous subtropical high system and anomalous southeasterly winds. The eastward movement of these anomalies enhances the monsoon off Sumatra-Java during May-August, leading to an early positive IOD onset. The pressure variability in the subtropical area is related with the Southern Annular Mode, suggesting a teleconnection between high-latitude and mid-latitude climate that can further affect the tropics. To include the subtropical signals may help model prediction of the IOD event.</p>


1998 ◽  
Vol 17 (1) ◽  
pp. 71-85 ◽  
Author(s):  
Alyssa Peleo-Alampay ◽  
David Bukry ◽  
Li Liu ◽  
Jeremy R. Young

Abstract. A systematic study on the evolution and stratigraphic distribution of the species of Catinaster from several DSDP/ODP sites with magnetostratigraphic records is presented. The evolution of Catinaster from Discoaster is established by documentation of a transitional nannofossil species, Discoaster transitus. Two new subspecies, Catinaster coalitus extensus and Catinaster calyculus rectus are defined which appear to be intermediates in the evolution of Catinaster coalitus coalitus to Catinaster calyculus calyculus. The first occurrence of C. coalitus is shown to be in the lower part of C5n.2n at 10.7–10.9 Ma in the low to mid–latitude Atlantic and Pacific Oceans. The last occurrence of C. coalitus coalitus varies from the upper part of C5n.2n to the lower portion of C4A. Magnetobiostratigraphic evidence suggests that the FO of C. calyculus rectus is diachronous. Catinaster mexicanus occurs in the late Miocene and has been found only in the eastern equatorial Pacific, the Indian Ocean and the Gulf of Mexico.


2013 ◽  
Vol 28 (4) ◽  
pp. 619-632 ◽  
Author(s):  
Yiming V. Wang ◽  
Guillaume Leduc ◽  
Marcus Regenberg ◽  
Nils Andersen ◽  
Thomas Larsen ◽  
...  

2018 ◽  
Vol 26 (2) ◽  
pp. 61-92 ◽  
Author(s):  
Anna M. Kotarba-Morley

Berenike Trog<l>odytica was one of the key harbours on the Red Sea coast during the Ptolemaic and Roman periods and was a major trade and exchange hub connecting the Indian Ocean and the Mediterranean. Berenike’s geographical position was extraordinarily propitious owing partly to its natural harbours, protected against the prevailing northern winds, as well as its location in the vicinity of an ancient viewshed, the large peninsula of Ras Benas. This paper discusses how multifaceted geoarchaeological approaches to the study of ancient ports can contribute to a better understanding of the mechanisms and logistics of maritime trade, as well as fluctuations in its quality and quantity. It also sheds new light on the significance of the effect that local and regional palaeoclimatic, landscape, seascape and environmental changes had on the development and decline of the port, and its changing role within the Red Sea–Indian Ocean maritime network.


2020 ◽  
Author(s):  
Beth Christensen ◽  
David DeVleeschouwer ◽  
Jeroen Groeneveld ◽  
Jorijntje Henderiks ◽  
Gerald Auer ◽  
...  

&lt;p&gt;The recent documentation of the southern hemisphere &amp;#8220;supergyre&amp;#8221;, the coupled subtropical southern hemisphere gyres spanning the 3 ocean basins, leads to questions about its impact on Indian Ocean circulation. The Indonesian Throughflow (ITF) acts as a switchboard directing warm surface waters towards the Agulhas Current (AC) and return flow to the North Atlantic, but Tasman Leakage (TL) is another source of return flow, however, at intermediate water depths. Fed by a complex mixture of South Pacific (SP) western boundary current surface and intermediate waters, and Antarctic Intermediate Water (AAIW), today the topography forces it to flow in a westerly direction. The TL flows over the Broken Ridge towards Madagascar, joining the AC and ultimately Atlantic Meridional Circulation (AMOC).&lt;/p&gt;&lt;p&gt;Stable isotope data from 4 DSPD/ ODP Indian Ocean sites define the history of TL and constrain the timing of its onset to ~7 Ma. &amp;#160;A simple nannofossil- biostratigraphy age model applied to previously published benthic foraminiferal carbon isotope data ensures the 4 time-series (~11 &amp;#8211; 2 Ma) are consistent. All 4 records (Sites 752 Broken Ridge, 590 Tasman Sea, 757 90 East Ridge, 751 Kerguelen Plateau) are similar from ~11 Ma to ~7 Ma, indicating the Tasman Sea intermediate water was sourced from the Southern Ocean (SO). A coeval shift at ~7 Ma at Sites 590 and 752 signals a SP contribution and the onset of TL. We do not observe TL at Sites 757 and 751 and so interpret the post-7 Ma divergence between the TL pair and the KP / 90E Ridge sites as a reflection of different intermediate water masses. The KP / 90E Ridge sites record a more fully SO signal, and these waters are constrained to the region west of the 90 East ridge.&lt;/p&gt;&lt;p&gt;The isotopic record of TL onset suggests important tectonic changes ~ 7 Ma: 1) opening of the Tasman Sea to the north and 2) Australia&amp;#8217;s northward motion allowing westward flow around Tasmania. The former is supported by a change in sedimentation style on the Marion Plateau (ODP Site 1197). The latter is supported by unconformities on the South Australian Bight margin (Leg 182 Sites 1126 (784 m), 1134 (701 m), 1130 (488m) and coeval decreases in mud- sized sediments at the Broken Ridge sites, indicating winnowing associated with the onset of the TL. A divergence is also apparent between Broken Ridge and Mascarene Plateau Site 707 records at this time. These events, coupled with the temporal relationship between the onset of the TL and a change in the character of deposition in the Maldives indicate enhanced Indian Ocean circulation at intermediate depths coincident with the late Miocene global cooling. Combined, these observations suggest the Indian Ocean in general plays a larger role in the global ocean system than previously recognized, and intermediate waters in particular are a critical yet poorly understood component of AMOC.&lt;/p&gt;


2020 ◽  
Author(s):  
Takeshi Izumo ◽  
Maratt Satheesan Swathi ◽  
Matthieu Lengaigne ◽  
Jérôme Vialard ◽  
Dr Ramesh Kumar

&lt;p&gt;A strong Low-Level Jet (LLJ), also known as the Findlater jet, develops over the Arabian Sea during the Indian summer monsoon. This jet is an essential source of moisture for monsoonal rainfall over the densely-populated Indian subcontinent and is a key contributor to the Indian Ocean oceanic productivity by sustaining the western Arabian Sea upwelling systems. The LLJ intensity fluctuates intraseasonally within the ~20- to 90-day band, in relation with the northward-propagating active and break phases of the Indian summer monsoon. Our observational analyses reveal that these large-scale regional convective perturbations&amp;#160; only explain about half of the intraseasonal LLJ variance, the other half being unrelated to large-scale convective perturbations over the Indian Ocean. We show that convective fluctuations in two regions outside the Indian Ocean can remotely force a LLJ intensification, four days later. Enhanced atmosphericdeep convection over the northwestern tropical Pacific yields westerly wind anomalies that propagate westward to the Arabian Sea as baroclinic atmospheric Rossby Waves. Suppressed convection over the eastern Pacific / North American monsoon region yields westerly wind anomalies that propagate eastward to the Indian Ocean as dry baroclinic equatorial Kelvin waves. Those largely independent remote influences jointly explain ~40% of the intraseasonal LLJ variance that is not related to convective perturbations over the Indian Ocean (i.e. ~20% of the total), with the northwestern Pacific contributing twice as much as the eastern Pacific. Taking into account these two remote influences should thus enhance the ability to predict the LLJ.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;Related reference:&amp;#160;Swathi M.S, Takeshi Izumo, Matthieu Lengaigne, J&amp;#233;r&amp;#244;me Vialard and M.R. Ramesh Kumar:Remote influences on the Indian monsoon Low-Level Jet intraseasonal variations, accepted in Climate Dynamics.&lt;/p&gt;


2013 ◽  
Vol 26 (11) ◽  
pp. 3562-3574 ◽  
Author(s):  
Maria Flatau ◽  
Young-Joon Kim

Abstract A tropical–polar connection and its seasonal dependence are examined using the real-time multivariate Madden–Julian oscillation (MJO) (RMM) index and daily indices for the annular modes, the Arctic Oscillation (AO) and the Antarctic Oscillation (AAO). On the intraseasonal time scale, the MJO appears to force the annular modes in both hemispheres. On this scale, during the cold season, the convection in the Indian Ocean precedes the increase of the AO/AAO. Interestingly, during the boreal winter (Southern Hemisphere warm season), strong MJOs in the Indian Ocean are related to a decrease of the AAO index, and AO/AAO tendencies are out of phase. On the longer time scales, a persistent AO/AAO anomaly appears to influence the convection in the tropical belt and impact the distribution of MJO-preferred phases. It is shown that this may be a result of the sea surface temperature (SST) changes related to a persistent AO, with cooling over the Indian Ocean and warming over Indonesia. In the Southern Hemisphere, the SST anomalies are to some extent also related to a persistent AAO pattern, but this relationship is much weaker and appears only during the Southern Hemisphere cold season. On the basis of these results, a mechanism involving the air–sea interaction in the tropics is suggested as a possible link between persistent AO and convective activity in the Indian Ocean and western Pacific.


2007 ◽  
Vol 20 (10) ◽  
pp. 2147-2164 ◽  
Author(s):  
Renguang Wu ◽  
Ben P. Kirtman

Abstract The biennial variability is a large component of year-to-year variations in the Indian summer monsoon (ISM). Previous studies have shown that El Niño–Southern Oscillation (ENSO) plays an important role in the biennial variability of the ISM. The present study investigates the role of the Indian Ocean in the biennial transition of the ISM when the Pacific ENSO is absent. The influence of the Indian and Pacific Oceans on the biennial transition between the ISM and the Australian summer monsoon (ASM) is also examined. Controlled numerical experiments with a coupled general circulation model (CGCM) are used to address the above two issues. The CGCM captures the in-phase ISM to ASM transition (i.e., a wet ISM followed by a wet ASM or a dry ISM followed by a dry ASM) and the out-of-phase ASM to ISM transition (i.e., a wet ASM followed by a dry ISM or a dry ASM followed by a wet ISM). These transitions are more frequent than the out-of-phase ISM to ASM transition and the in-phase ASM to ISM transition in the coupled model, consistent with observations. The results of controlled coupled model experiments indicate that both the Indian and Pacific Ocean air–sea coupling are important for properly simulating the biennial transition between the ISM and ASM in the CGCM. The biennial transition of the ISM can occur through local air–sea interactions in the north Indian Ocean when the Pacific ENSO is suppressed. The local sea surface temperature (SST) anomalies induce the Indian monsoon transition through low-level moisture convergence. Surface evaporation anomalies, which are largely controlled by surface wind speed changes, play an important role for SST changes. Different from local air–sea interaction mechanisms proposed in previous studies, the atmospheric feedback is not strong enough to reverse the SST anomalies immediately at the end of the monsoon season. Instead, the reversal of the SST anomalies is accomplished in the spring of the following year, which in turn leads to the Indian monsoon transition.


MAUSAM ◽  
2021 ◽  
Vol 43 (4) ◽  
pp. 395-398
Author(s):  
M.S. SINGH ◽  
B. Lakshmanaswamy

Evolution and characteristic features of double trough systems in the tropical Indian Ocean have been studied with the help of Climatological Atlas (Part I andIl) ~f the Tropical Indian Oc.ean (Hastenrath and Lamb 1979). It is confirmed that there are two troughs (Northern Hemisphere EquatorIal Trough and Southern Hemisphere Equatorial Trough) in this region (including south Asian landmass) all the year round, one in northern hemisphere and the other in southern. Both are migratory in nature and, perhaps, thermal in origin.  In the convergent zones of the two troughs, there is extensive cloudiness. The migration of these trough systems during their respective summer seasons appear to be related to the extensive heating of the south Asian/ African land masses surrounding the Indian Ocean in north and west.  


Sign in / Sign up

Export Citation Format

Share Document