scholarly journals Evolution of two troughs in the tropical Indian Ocean and their characteristic features

MAUSAM ◽  
2021 ◽  
Vol 43 (4) ◽  
pp. 395-398
Author(s):  
M.S. SINGH ◽  
B. Lakshmanaswamy

Evolution and characteristic features of double trough systems in the tropical Indian Ocean have been studied with the help of Climatological Atlas (Part I andIl) ~f the Tropical Indian Oc.ean (Hastenrath and Lamb 1979). It is confirmed that there are two troughs (Northern Hemisphere EquatorIal Trough and Southern Hemisphere Equatorial Trough) in this region (including south Asian landmass) all the year round, one in northern hemisphere and the other in southern. Both are migratory in nature and, perhaps, thermal in origin.  In the convergent zones of the two troughs, there is extensive cloudiness. The migration of these trough systems during their respective summer seasons appear to be related to the extensive heating of the south Asian/ African land masses surrounding the Indian Ocean in north and west.  

2006 ◽  
Vol 19 (23) ◽  
pp. 6195-6208 ◽  
Author(s):  
Xiaodong Liu ◽  
Zhengyu Liu ◽  
John E. Kutzbach ◽  
Steven C. Clemens ◽  
Warren L. Prell

Abstract Insolation forcing related to the earth’s orbital parameters is known to play an important role in regulating variations of the South Asian monsoon on geological time scales. The influence of insolation forcing on the Indian Ocean and Asian monsoon is studied in this paper by isolating the Northern and Southern Hemispheric insolation changes in several numerical experiments with a coupled ocean–atmosphere model. The focus is on the response of South Asian summer rainfall (monsoon strength) with emphasis on impacts of the local versus remote forcing and possible mechanisms. The model results show that both Northern Hemisphere (NH) and Southern Hemisphere (SH) summer insolation changes affect the Indian Ocean and Asian monsoon as a local forcing (in the same hemisphere), but only the SH changes result in remote (in the other hemisphere) forcing. The NH insolation change has a local and immediate impact on NH summer monsoons from North Africa to South and East Asia, while the SH insolation change has a remote and seasonal-scale delayed effect on the South Asian summer monsoon rainfall. When the SH insolation is increased from December to April, the sea surface temperature (SST) in the southern tropical Indian Ocean remains high from January to July. The increased SST produces more atmospheric precipitable water over the southern tropical Indian Ocean by promoting evaporation from the ocean. The enhanced precipitable water over the southern Indian Ocean is transported northward to the South Asian monsoon region by the lower-tropospheric mean cross-equatorial flows with the onset of the Asian monsoon increasing precipitable water over South Asia, eventually leading to the increase of Indian summer monsoon precipitation. Thus, these model experiments, while idealized and not fully representing actual orbitally forced insolation changes, confirm the broadscale response of northern monsoons to NH summer insolation increases and also illustrate how SH summer insolation increases can have a delayed influence on the Indian summer monsoon.


2007 ◽  
Vol 20 (13) ◽  
pp. 3164-3189 ◽  
Author(s):  
H. Annamalai ◽  
H. Okajima ◽  
M. Watanabe

Abstract Two atmospheric general circulation models (AGCMs), differing in numerics and physical parameterizations, are employed to test the hypothesis that El Niño–induced sea surface temperature (SST) anomalies in the tropical Indian Ocean impact considerably the Northern Hemisphere extratropical circulation anomalies during boreal winter [January–March +1 (JFM +1)] of El Niño years. The hypothesis grew out of recent findings that ocean dynamics influence SST variations over the southwest Indian Ocean (SWIO), and these in turn impact local precipitation. A set of ensemble simulations with the AGCMs was carried out to assess the combined and individual effects of tropical Pacific and Indian Ocean SST anomalies on the extratropical circulation. To elucidate the dynamics responsible for the teleconnection, solutions were sought from a linear version of one of the AGCMs. Both AGCMs demonstrate that the observed precipitation anomalies over the SWIO are determined by local SST anomalies. Analysis of the circulation response shows that over the Pacific–North American (PNA) region, the 500-hPa height anomalies, forced by Indian Ocean SST anomalies, oppose and destructively interfere with those forced by tropical Pacific SST anomalies. The model results validated with reanalysis data show that compared to the runs where only the tropical Pacific SST anomalies are specified, the root-mean-square error of the height anomalies over the PNA region is significantly reduced in runs in which the SST anomalies in the Indian Ocean are prescribed in addition to those in the tropical Pacific. Among the ensemble members, both precipitation anomalies over the SWIO and the 500-hPa height over the PNA region show high potential predictability. The solutions from the linear model indicate that the Rossby wave packets involved in setting up the teleconnection between the SWIO and the PNA region have a propagation path that is quite different from the classical El Niño–PNA linkage. The results of idealized experiments indicate that the Northern Hemisphere extratropical response to Indian Ocean SST anomalies is significant and the effect of this response needs to be considered in understanding the PNA pattern during El Niño years. The results presented herein suggest that the tropical Indian Ocean plays an active role in climate variability and that accurate observation of SST there is of urgent need.


2015 ◽  
Vol 28 (2) ◽  
pp. 695-713 ◽  
Author(s):  
Yan Du ◽  
Yuhong Zhang

Abstract This study investigates sea surface salinity (SSS) variations in the tropical Indian Ocean (IO) using the Aquarius/Satelite de Aplicaciones Cientificas-D (SAC-D) and the Soil Moisture and Ocean Salinity (SMOS) satellite data and the Argo observations during July 2010–July 2014. Compared to the Argo observations, the satellite datasets generally provide SSS maps with higher space–time resolution, particularly in the regions where Argo floats are sparse. Both Aquarius and SMOS well captured the SSS variations associated with the Indian Ocean dipole (IOD) mode. Significant SSS changes occurred in the central equatorial IO, along the Java–Sumatra coast, and south of the equatorial IO, due to ocean circulation variations. During the negative IOD events in 2010, 2013, and 2014, westerly wind anomalies strengthened along the equator, weakening coastal upwelling off Java and Sumatra and decreasing SSS. South of the equatorial IO, an anomalous cyclonic gyre changed the tropical circulation, which favored the eastward high-salinity tongue along the equator and the westward low-saline tongue in the south. An upwelling Rossby wave favored the increase of SSS farther to the south. During the positive IOD events in 2011 and 2012, the above-mentioned processes reversed, although the decrease of SSS was weaker in magnitude.


Arabica ◽  
2020 ◽  
Vol 67 (4) ◽  
pp. 409-435
Author(s):  
Meia Walravens

Abstract A growing body of literature on trade and cultural exchange between the Indian Ocean regions has already contributed significantly to our understanding of these processes and the role of language and writing within them. Yet, the question remains how Arabic correspondence played a part in communications between South Asian powers and the rulers in the Red Sea region. In order to begin filling this lacuna, this article studies epistolary writings from the Bahmani Sultanate (748/1347-934/1528) to the Mamluk Sultanate (648/1250-922/1517) during the second half of the ninth/fifteenth century. The contextualisation and discussion of three letters render insight both into the (up to now unstudied) issues at play in Bahmani-Mamluk relations and into the nature of these Arabic texts.


2020 ◽  
Author(s):  
Giovanni Dalu ◽  
Marco Gaetani ◽  
Cyrille Flamant ◽  
Marina Baldi

<p>The West African monsoon (WAM) originates in the Gulf of Guinea when the intertropical convergence zone (ITCZ) makes its landfall; whilst, the south Asian monsoon (SAM) originates in the Indian ocean when the ITCZ crosses the equator. The monsoonal dynamics are here studied after landfall using Gill’s tropospheric model with an implanted Ekman frictional layer (EFL). Ekman pumping increases low level convergence, making the lower monsoonal cyclone deeper and more compact that the upper anticyclone, by transferring tropospheric vorticity into the EFL. In the upper troposphere, air particles spiral-out anticyclonically away from the monsoons, subsiding over the Tropical Atlantic, the Tropical Indian ocean, or transiting into the southern hemisphere across the equator. Whilst marine air particles spiral-in cyclonically towards the WAM or the SAM, the latter appears to be a preferred ending destination in the absence of orography. The Himalayas introduced as a barrier to the monsoonal winds, strengthen the tropospheric winds by tightening the isobars. The Somali mountains (SMs), introduced as a barrier to the Ekman winds, separates the WAM and the SAM catch basins; thus, the Atlantic air particles converge towards the WAM and the Indian ocean particles converge towards the SAM. The Indian Ghats (IGs), introduced as a semi-impermeable barrier to the Ekman winds, deflect the marine air particles originated in the western Indian ocean towards the south-eastern flank of the SAM. In short, an upper single anticyclone encircles both monsoons; the Himalayas strengthen the upper-level winds by increasing the pressure gradients; the SMs split the EFL cyclone, keeping the marine air particles to the west of SMs in the WAM basin and the particles to the east of SMs in the SAM basin; the IGs guides transmit the air particles, deflecting them towards Bangladesh.</p>


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Emmanuelle C. Leroy ◽  
Jean-Yves Royer ◽  
Abigail Alling ◽  
Ben Maslen ◽  
Tracey L. Rogers

AbstractBlue whales were brought to the edge of extinction by commercial whaling in the twentieth century and their recovery rate in the Southern Hemisphere has been slow; they remain endangered. Blue whales, although the largest animals on Earth, are difficult to study in the Southern Hemisphere, thus their population structure, distribution and migration remain poorly known. Fortunately, blue whales produce powerful and stereotyped songs, which prove an effective clue for monitoring their different ‘acoustic populations.’ The DGD-Chagos song has been previously reported in the central Indian Ocean. A comparison of this song with the pygmy blue and Omura’s whale songs shows that the Chagos song are likely produced by a distinct previously unknown pygmy blue whale population. These songs are a large part of the underwater soundscape in the tropical Indian Ocean and have been so for nearly two decades. Seasonal differences in song detections among our six recording sites suggest that the Chagos whales migrate from the eastern to western central Indian Ocean, around the Chagos Archipelago, then further east, up to the north of Western Australia, and possibly further north, as far as Sri Lanka. The Indian Ocean holds a greater diversity of blue whale populations than thought previously.


2020 ◽  
Vol 33 (16) ◽  
pp. 6849-6871 ◽  
Author(s):  
Clemens Spensberger ◽  
Thomas Spengler

AbstractJets in the upper troposphere constitute a cornerstone of both synoptic meteorology and climate dynamics, providing a direct link between weather and midlatitude climate variability. Conventionally, jet variability is often inferred indirectly through the variability of geopotential or sea level pressure. As recent findings pointed to physical discrepancies of this interpretation for the Southern Hemisphere, this study presents a global overview of jet variability based on automated jet detections in the upper troposphere. Consistent with previous studies, most ocean basins are dominated by variability patterns comprising either a latitudinal shift of the jet or a so-called pulsing, a broadening/narrowing of the jet distribution without a change in the mean position. Whereas previous studies generally associate a mode of storm track variability with either shifting or pulsing, jet-based variability patterns frequently represent a transition from shifting to pulsing, or vice versa, across the respective ocean basin. In the Northern Hemisphere, jet variability is consistent with geopotential variability, confirming earlier analyses. In the Southern Hemisphere, however, the variability of geopotential and jets often indicates different modes of variability. Notable exceptions are the consistent dominant modes of jet and geopotential variability in the South Pacific and, to a lesser extent, the south Indian Ocean during winter, as well as the dominant modes in the South Atlantic and south Indian Ocean during summer. Finally, tropical variability is shown to modulate the jet distribution in the Northern Hemisphere, which is in line with previous results. The response in the Southern Hemispheric, however, is shown to be markedly different.


Author(s):  
Mehrdad Shokoohy

AbstractThe ex-Portuguese town of Diu on the island with the same name off the south coast of Saurashtra, Gujarat, is one of the best-preserved and yet least-studied Portuguese colonial towns. Diu was the last of the Portuguese strongholds in India, the control of which was finally achieved in 1539 after many years of futile struggle and frustrating negotiations with the sultanate of Gujarat. During the late sixteenth and seventeenth century Diu remained a main staging post for Portuguese trade in the Indian Ocean, but with the appearance of the Dutch, and later the French and British, on the scene the island gradually lost its strategic importance. The town was subjected to little renovation during the nineteenth century while in the twentieth century Diu was no more than an isolated Portuguese outpost with meagre trade until it was taken over by India in 1961. As a result, unlike the other former Portuguese colonies in India – Daman and Goa – Diu has preserved most of its original characteristics: a Portuguese colonial town plan, a sixteenth-century fort and a number of old churches, as well as many of the eighteenth and nineteenth-century houses.


Sign in / Sign up

Export Citation Format

Share Document