Geochemical and Geophysical Evidence for Late Miocene Onset of Tasman Leakage

Author(s):  
Beth Christensen ◽  
David DeVleeschouwer ◽  
Jeroen Groeneveld ◽  
Jorijntje Henderiks ◽  
Gerald Auer ◽  
...  

<p>The recent documentation of the southern hemisphere “supergyre”, the coupled subtropical southern hemisphere gyres spanning the 3 ocean basins, leads to questions about its impact on Indian Ocean circulation. The Indonesian Throughflow (ITF) acts as a switchboard directing warm surface waters towards the Agulhas Current (AC) and return flow to the North Atlantic, but Tasman Leakage (TL) is another source of return flow, however, at intermediate water depths. Fed by a complex mixture of South Pacific (SP) western boundary current surface and intermediate waters, and Antarctic Intermediate Water (AAIW), today the topography forces it to flow in a westerly direction. The TL flows over the Broken Ridge towards Madagascar, joining the AC and ultimately Atlantic Meridional Circulation (AMOC).</p><p>Stable isotope data from 4 DSPD/ ODP Indian Ocean sites define the history of TL and constrain the timing of its onset to ~7 Ma.  A simple nannofossil- biostratigraphy age model applied to previously published benthic foraminiferal carbon isotope data ensures the 4 time-series (~11 – 2 Ma) are consistent. All 4 records (Sites 752 Broken Ridge, 590 Tasman Sea, 757 90 East Ridge, 751 Kerguelen Plateau) are similar from ~11 Ma to ~7 Ma, indicating the Tasman Sea intermediate water was sourced from the Southern Ocean (SO). A coeval shift at ~7 Ma at Sites 590 and 752 signals a SP contribution and the onset of TL. We do not observe TL at Sites 757 and 751 and so interpret the post-7 Ma divergence between the TL pair and the KP / 90E Ridge sites as a reflection of different intermediate water masses. The KP / 90E Ridge sites record a more fully SO signal, and these waters are constrained to the region west of the 90 East ridge.</p><p>The isotopic record of TL onset suggests important tectonic changes ~ 7 Ma: 1) opening of the Tasman Sea to the north and 2) Australia’s northward motion allowing westward flow around Tasmania. The former is supported by a change in sedimentation style on the Marion Plateau (ODP Site 1197). The latter is supported by unconformities on the South Australian Bight margin (Leg 182 Sites 1126 (784 m), 1134 (701 m), 1130 (488m) and coeval decreases in mud- sized sediments at the Broken Ridge sites, indicating winnowing associated with the onset of the TL. A divergence is also apparent between Broken Ridge and Mascarene Plateau Site 707 records at this time. These events, coupled with the temporal relationship between the onset of the TL and a change in the character of deposition in the Maldives indicate enhanced Indian Ocean circulation at intermediate depths coincident with the late Miocene global cooling. Combined, these observations suggest the Indian Ocean in general plays a larger role in the global ocean system than previously recognized, and intermediate waters in particular are a critical yet poorly understood component of AMOC.</p>

2014 ◽  
Vol 10 (1) ◽  
pp. 293-303 ◽  
Author(s):  
S. Romahn ◽  
A. Mackensen ◽  
J. Groeneveld ◽  
J. Pätzold

Abstract. The importance of intermediate water masses in climate change and ocean circulation has been emphasized recently. In particular, Southern Ocean Intermediate Waters (SOIW), such as Antarctic Intermediate Water and Subantarctic Mode Water, are thought to have acted as active interhemispheric transmitter of climate anomalies. Here we reconstruct changes in SOIW signature and spatial and temporal evolution based on a 40 kyr time series of oxygen and carbon isotopes as well as planktic Mg/Ca based thermometry from Site GeoB12615-4 in the western Indian Ocean. Our data suggest that SOIW transmitted Antarctic temperature trends to the equatorial Indian Ocean via the "oceanic tunnel" mechanism. Moreover, our results reveal that deglacial SOIW carried a signature of aged Southern Ocean deep water. We find no evidence of increased formation of intermediate waters during the deglaciation.


MAUSAM ◽  
2022 ◽  
Vol 46 (4) ◽  
pp. 409-422
Author(s):  
S. K. BEHERA ◽  
P. S. SALVEKAR

A simple reductA1 gravity wind-driven ocean circulation model is used to study the interannual variability in the upper layer of the Indian Ocean (24°S-23°N and 3S°E-IIS0E). The monthly mean wind stress for the period 1977-1986 are used as a forcing in the model. The model reproduces most of the observed features of the annual cycle of the upper layer circulation in the Indian Ocean when was forced with the ten-year average monthly mean wind. The circulation features and the model upper layer thickness show considerable interannual variability in most part of the basin; in particular, the Somali Current, the basin wide southern hemisphere gyre, the Equatorial Currents and the gyres in the Bay of Bengal. Six consecutive years starting from 1978 to 1983 which include two bad monsoon years of 1979 and 1982 are chosen to study the interannual variability. February circulation field shows stronger Equatorial Counter Currents in bad monsoon years, whereas. the cunents north of Madagascar flowing up to the African coast are found to be stronger in good monsoon years. The southward return flow from the Southern Gyre in August is strong and more to southern latitudes in the bad monsoon years. The flow circulated eastward to form another eddy east of Southern Gyre. The basin wide gyre of the southern hemisphere (SH) shows less variability in two consecutive normal years than in contrasting years.      


2021 ◽  
Author(s):  
Stephen Kelly ◽  
Ekaterina Popova ◽  
Zoe Jacobs

<p>Marine circulation connectivity describes the pathways and timescales over which spatially separated parts of the ocean are connected by oceanic currents. In the Western Indian Ocean (WIO), these pathways and associated timescales are characterised by pronounced seasonal and interannual variability, including monsoon-driven reversal of surface currents in the northern part of the basin.</p><p>Understanding the connectivity timescales in the WIO – and their variability – is important for a multitude of reasons. Ecological connectivity between coral reefs is necessary to maintain their biodiversity, understanding downstream connectivity from marine resource exploitation sites is important to understand which areas are likely to be affected, and circulation connectivity is a key concern when designing marine conservation measures. For example, establishing an effective network of marine protected areas (MPAs) requires that they are connected on ecologically relevant timescales (e.g. the duration of species’ pelagic larval stages), but gaps in the existing MPA network mean that decisions need to be undertaken about which areas to prioritise for future protection. Therefore, knowledge of the advective pathways connecting the WIO over these timescales is essential for effective management of the region.</p><p>Here, a Lagrangian particle tracking method is used in conjunction with a 1/12° resolution ocean model to elucidate the advective pathways mediated by major surface currents in the WIO. Model experiments are performed with virtual particles released into several major WIO currents and tracked for 100 days, and the resulting trajectories are analysed. Significant variability was found, with advective pathways and timescales sensitive to both season and year of release. The main differences are associated with the different monsoon regimes driving changes in connectivity timescales, and reversing direction of advective pathways in the north of the WIO. In addition to this seasonal variability, interannual changes are explored. Case studies of anomalous connectivity pathways / timescales are presented and discussed in the context of extremes in forcing and larger scale variability, including the Indian Ocean Dipole.  </p>


Ocean Science ◽  
2021 ◽  
Vol 17 (5) ◽  
pp. 1213-1229
Author(s):  
Michel Michaelovitch de Mahiques ◽  
Roberto Violante ◽  
Paula Franco-Fraguas ◽  
Leticia Burone ◽  
Cesar Barbedo Rocha ◽  
...  

Abstract. In this study, we interpret the role played by ocean circulation in sediment distribution on the southwestern Atlantic margin using radiogenic Nd and Pb isotopes. The latitudinal trends for Pb and Nd isotopes reflect the different current systems acting on the margin. The utilization of the sediment fingerprinting method allowed us to associate the isotopic signatures with the main oceanographic features in the area. We recognized differences between Nd and Pb sources to the Argentinean shelf (carried by the flow of Subantarctic Shelf Water) and slopes (transported by deeper flows). Sediments from Antarctica extend up to the Uruguayan margin, carried by the Upper and Lower Circumpolar Deep Water. Our data confirm that, for shelf and intermediate areas (the upper 1200 m), the transfer of sediments from the Argentinean margin to the north of 35∘ S is limited by the Subtropical Shelf Front and the basin-wide recirculated Antarctic Intermediate Water. On the southern Brazilian inner and middle shelf, it is possible to recognize the northward influence of the Río de la Plata sediments carried by the Plata Plume Water. Another flow responsible for sediment transport and deposition on the outer shelf and slope is the southward flow of the Brazil Current. Finally, we propose that the Brazil–Malvinas Confluence and the Santos Bifurcation act as boundaries of geochemical provinces in the area. A conceptual model of sediment sources and transport is provided for the southwestern Atlantic margin.


2006 ◽  
Vol 2 (4) ◽  
pp. 605-631 ◽  
Author(s):  
G. Lohmann ◽  
M. Butzin ◽  
A. Micheels ◽  
T. Bickert ◽  
V. Mosbrugger

Abstract. A weak and shallow thermohaline circulation in the North Atlantic Ocean is related to an open Central American gateway and exchange with fresh Pacific waters. We estimate the effect of vegetation on the ocean general circulation using the atmospheric circulation model simulations for the Late Miocene climate. Caused by an increase in net evaporation in the Miocene North Atlantic, the North Atlantic water becomes more saline which enhances the overturning circulation and thus the northward heat transport. This effect reveals a potentially important feedback between the ocean circulation, the hydrological cycle and the land surface cover for Cenozoic climate evolution.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Emmanuelle C. Leroy ◽  
Jean-Yves Royer ◽  
Abigail Alling ◽  
Ben Maslen ◽  
Tracey L. Rogers

AbstractBlue whales were brought to the edge of extinction by commercial whaling in the twentieth century and their recovery rate in the Southern Hemisphere has been slow; they remain endangered. Blue whales, although the largest animals on Earth, are difficult to study in the Southern Hemisphere, thus their population structure, distribution and migration remain poorly known. Fortunately, blue whales produce powerful and stereotyped songs, which prove an effective clue for monitoring their different ‘acoustic populations.’ The DGD-Chagos song has been previously reported in the central Indian Ocean. A comparison of this song with the pygmy blue and Omura’s whale songs shows that the Chagos song are likely produced by a distinct previously unknown pygmy blue whale population. These songs are a large part of the underwater soundscape in the tropical Indian Ocean and have been so for nearly two decades. Seasonal differences in song detections among our six recording sites suggest that the Chagos whales migrate from the eastern to western central Indian Ocean, around the Chagos Archipelago, then further east, up to the north of Western Australia, and possibly further north, as far as Sri Lanka. The Indian Ocean holds a greater diversity of blue whale populations than thought previously.


2021 ◽  
Author(s):  
Maria Elena Gastaldello ◽  
Claudia Agnini ◽  
Edoardo Dallanave ◽  
Thomas Westerhold ◽  
Adriane R. Lam ◽  
...  

<p>The latest Miocene-early Pliocene biogenic bloom is a poorly understood paleoceanographic event that has been traditionally related to increased primary productivity; and associated changes in the marine carbon cycle. In order to identify this event in the Tasman Sea, we carried out an integrated study at IODP Site U1506. First, we have constructed an age model based on an integrated approach (i.e. biostratigraphy, astrocyclostratigraphic tuning). This permits the identification of the precise position as well as the duration of the biogenic bloom in the Tasman Sea but also the calculation of sedimentation rates across the study interval. In this framework, we generated quantitative micropaleontological records (benthic and planktic foraminifera and calcareous nannofossils) and a low-resolution carbon and oxygen stable isotope records on <em>Cibicidoides mundulus</em> and <em>Trilobatus sacculifer</em> across an interval spanning from 233.50 to 81.75 m CSF-A (Tortonian, late Miocene to Zanclean, early Pliocene). Quantitative assemblage work and statistical analyses on the resulting dataset point to increased export productivity in the lower part of the interval (between CNM15 and CNM18, Backman et al., 2012), as inferred from benthic foraminiferal assemblages dominated by taxa (e.g. <em>Uvigerina</em> and <em>Ehrenbergina</em>) that have been reported to be common across the biogenic bloom in the Indian Ocean (Dickens and Owen, 1999). The paleoecological analysis of these assemblages suggests eutrophic conditions at the seafloor and low oxygen concentration of bottom waters.</p><p><strong>Reference</strong></p><p>Backman, J., Raffi, I., Rio, D., Fornaciari, E., & Pälike, H., 2012. Biozonation and biochronology of Miocene through Pleistocene calcareous nannofossils from low and middle latitudes. Newsletters on Stratigraphy, 45(3), 221–244.</p><p>Dickens, G.R. and Owen, R.M., 1999. The latest Miocene-early Pliocene biogenic bloom: A revised Indian Ocean perspective. Marine Geology, 161: 75-91.</p><p><strong>Acknowledgments</strong></p><p>University of Padova DOR grant, CARIPARO Foundation Phd scholarship.</p><p>Spanish Ministry of Economy and Competitiveness and FEDER funds (PID2019-105537RB-I00).<strong> </strong></p>


2015 ◽  
Vol 45 (4) ◽  
pp. 988-1008 ◽  
Author(s):  
Takuya Nakanowatari ◽  
Humio Mitsudera ◽  
Tatsuo Motoi ◽  
Ichiro Ishikawa ◽  
Kay I. Ohshima ◽  
...  

AbstractUsing oceanographic observations and an eddy-resolving ice–ocean coupled model simulation from 1955 to 2004, the effects of the wind-driven ocean circulation change that occurred in the late 1970s during multidecadal-scale freshening of the North Pacific Intermediate Water (NPIW) at salinity minimum density (~26.8 σθ) were investigated. An analysis of the observations revealed that salinity decreased significantly at the density range of 26.6–26.8 σθ in the western subtropical gyre, including the mixed water region (MWR). The temporal variability of the salinity is dominated by the marked change in the late 1970s. With results similar to the observations, the model, selectively forced by the interannual variability of the wind-driven ocean circulation, simulated significant freshening of the intermediate layer over the subtropical gyre. The significant freshening is related to the increase in southward transport of the Oyashio associated with the intensification of the Aleutian low. Accompanying these changes, the intrusion of fresh and low potential vorticity water, originating in the Okhotsk Sea, to the MWR increased, and the freshening signal propagated farther southward in the western subtropical gyre during the subsequent 6 yr, crossing the Kuroshio Extension. These results indicate that the multidecadal-scale freshening of the NPIW is partly caused by intensification of the wind-driven cross-gyre transport of the subarctic water to the subtropical gyre.


Author(s):  
Friedrich A. Schott

The Indian Ocean differs from the other two oceans in not possessing an eastern equatorial upwelling regime. Instead, the upwelling occurs dominantly in the northwestern Arabian Sea and, to a lesser degree, around the Indian subcontinent. Subduction, on the other hand, occurs dominantly in the Southern Hemisphere. The result is a shallow Cross–Equatorial Cell connecting both regimes. The northward flow at thermocline levels occurs as part of the Somali Current and the southward upper–layer return flow is carried by the Ekman transports that are directed southward in both hemispheres. The main forcing is by the Southwest Monsoon that overwhelms the effects of the Northeast Monsoon and is the cause for the annual mean Northern Hemisphere upwelling and southward Ekman transports. In the Southern Hemisphere, the annual mean upwelling at the northern rim of the Southeast Trades causes a zonally extended open–ocean upwelling regime that is apparent in isopycnal doming in the 3–12○ S band; it drives a shallow Subtropical Cell.


2020 ◽  
Vol 27 ◽  
pp. 49-52
Author(s):  
Lisa McNeill ◽  
Brandon Dugan ◽  
Katerina Petronotis ◽  
Kitty Milliken ◽  
Jane Francis ◽  
...  

Abstract. Drilling and coring during IODP Expedition 362 in the eastern Indian Ocean encountered probably the largest wood fragment ever recovered in scientific ocean drilling. The wood is Late Miocene in age and buried beneath ∼800 m of siliciclastic mud and sand of the Bengal–Nicobar Fan. The wood is well preserved. Possible origins include the hinterland to the north, with sediment transported as part of the submarine fan sedimentary processes, or the Sunda subduction zone to the east, potentially as a megathrust tsunami deposit.


Sign in / Sign up

Export Citation Format

Share Document