scholarly journals New observations of late summer bio-physical ice and snow conditions in the northwestern Weddell Sea

Author(s):  
Stefanie Arndt ◽  
Christian Haas ◽  
Ilka Peeken

<p>Summer sea ice extent in the Weddell Sea has increased overall during the last four decades, with large interannual variations. However, the underlying causes and the related ice and snow properties are still poorly known. Here we present results of the interdisciplinary Weddell Sea Ice (WedIce) project carried out in the northwestern Weddell Sea on board the German icebreaker R/V Polarstern in February and March 2019, i.e. at the end of the summer ablation period. This is the region of the thickest, oldest ice in the Weddell Sea, at the outflow of the Weddell Gyre. Measurements included airborne ice thickness surveys and in-situ snow and ice sampling of mostly second- and third year ice. Preliminary results show mean ice thicknesses between 2.6 and 5.4 m, increasing from the Antarctic Sound towards the Larsen B region. The ice had mostly positive ice freeboard. Mean snow thicknesses ranged between 0.05 and 0.46 m. Snow was well below the melting temperature on most days and was highly metamorphic and icy, with melt-freeze forms as dominant snow type. In addition, as a result of the summer’s thaw, an average of 0.14 m of superimposed ice was found in all ice cores drilled during the cruise. Although there was rotten ice below a solid, ca. 30 cm thick surface ice layer, pronounced gap layers typical for late summer ice in the marginal ice zone were rare, and algal biomass was patchily distributed within individual sea ice cores. Overall, there was a strong gradient of increasing ice algal biomass from the Larsen B to the Antarctic Sound region. The presented results show that sea ice conditions in the northwestern Weddell Sea are still severe and have not changed significantly since the last observations carried out in 2004 and 2006. The presence of relatively thin, icy snow has strong implications for the ice and snow mass balance, for freshwater oceanography, and for the application of remote sensing methods. Overall sea ice properties strongly affect the biological productivity of this region and limit carbon fluxes to the seafloor in the northwestern Weddell Sea.</p>

2021 ◽  
Author(s):  
Stefanie Arndt ◽  
Hanno Meyer ◽  
Ilka Peeken ◽  
Christian Haas

<p>Summer sea ice extent in the Weddell Sea has increased overall during the last four decades, with large interannual variations. However, the underlying causes and the related ice and snow properties are still poorly known.</p><p>Here, we present results of the interdisciplinary Weddell Sea Ice (WedIce) project carried out in the northwestern Weddell Sea on board the German icebreaker R/V Polarstern in February and March 2019, i.e. at the end of the summer ablation period, focusing on 21 ice cores sampled for texture, salinity and isotope analysis.</p><p>The ice at the coring sites had an average thickness of 178 cm with an average snow depth of 13 cm and a consistently positive freeboard. Isotope and salinity analyses revealed an average meteoric ice fraction of 23%. This included about 17% (22cm) snow-ice, saline sea ice formed by flooding and refreezing of snow at the snow/ice interface. In contrast, superimposed ice, fresh sea ice formed through melting and refreezing of snow only, account for about 6% (11cm) of the sea-ice thickness. The comparison of our results with previous expeditions to the same region shows that the thickness of superimposed ice has hardly increased, indicating no dominant changes in the amount of surface summer melt/thaw, despite the observed sea ice decline in the northwestern Weddell Sea during summer in recent years.</p><p>However, we consider the evolution of snow properties, and in particular the proportion of meteoric ice in the snow cover, as a critical indicator for significant changes in the coupled atmosphere/sea ice/ocean system.</p>


2020 ◽  
Author(s):  
Ilka Peeken ◽  
Stefanie Arndt ◽  
Markus Janout ◽  
Thomas Krumpen ◽  
Christian Haas

<p>The western Weddell Sea along the northward branch of the Weddell Gyre is a region of major outflow of various water masses, thick sea ice, and biogeochemical matter, linking the Antarctic continent to the world oceans. It features a deep shelf and the second largest ice shelf (Larsen C) in the WS, and its perennial sea ice cover is among the thickest on earth. This region is undergoing dramatic changes due to the breakup of ice shelves along the Antarctic Peninsula, which results in oceanographic conditions unprecedented in the past 10,000 years. Since this region is difficult to access, comprehensive physical and biogeochemical information is still lacking. During the interdisciplinary Weddell Sea Ice (WedIce) expedition to the northwestern Weddell Sea on board the German icebreaker RV Polarstern in spring 2019, oceanographic and biogeochemical studies were conducted together with in-situ snow and ice sampling. Most stations visited contained second- and third-year ice. Additional airborne ice-thickness surveys revealed a mean ice thicknesses between 2.6 and 5.4 m, increasing from the Antarctic Sound towards the Larsen B region. Usually rotten ice was present below a solid, ~30 cm thick surface-ice layer, however, pronounced gap layers, typical for late summer ice in the marginal ice zone, were rare. The associated high algal biomass was only found north of the Antarctic Sound. Nevertheless, diatom-dominated standing stocks of integrated sea ice algae biomass were among the highest, previously described in Antarctic waters. In contrast, despite overall high macro-nutrient concentrations in the water, the biomass of the flagellate dominated phytoplankton was negligible for primary production in the entire region. Overall, it seems that despite changing light conditions for the phytoplankton due to the loss of ice shelves, the sea ice-derived carbon represents an important control variable for higher trophic levels in the western Weddell Sea.</p>


2001 ◽  
Vol 13 (2) ◽  
pp. 150-157 ◽  
Author(s):  
Sigrid B. Schnack-Schiel ◽  
David N. Thomas ◽  
Christian Haas ◽  
Gerhard S. Dieckmann ◽  
Ruth Alheit

In January to March 1997, a RV Polarstern cruise that transected the Weddell Sea resulted in samples being taken in thick pack ice in the south-eastern Weddell Sea and then along the marginal ice edge towards the Antarctic Peninsula. Several ice types were thus sampled over a wide geographic area during late summer/early autumn. Common features of the first warm period was the occurrence of surface ponds, and that many floes had quasi-continuous horizontal gaps, underlying a layer of ice and metamorphic snow. With the onset of cold air temperatures in late February the gaps rapidly refroze. The calanoid copepod Stephos longipes occurred in all habitats encountered and showed highest numbers in the surface ice in summer, in the gap water during both seasons and in the refrozen gap water in autumn. Nauplii outnumbered copepodids in the surface ice and refrozen gap water, while in the gap water copepodids, mainly stages CI–CIII in summer and CII–CIV in autumn, comprised about 70% of the total population. The harpacticoid species Drescheriella glacialis did not occur in all habitats and was missing in surface ponds and new ice. Nauplii of D. glacialis were rarely found in gap water, but predominated in the refrozen gaps.


1988 ◽  
Vol 11 ◽  
pp. 204-205 ◽  
Author(s):  
Robert Mulvaney ◽  
David A. Peel

In January 1986, a 133 m ice core, with an estimated age at the bottom of 300-350 years, was collected (using an electromechanical drill) on Dolleman Island (70° 35.2′S, 60°55.5′ W; 398 ma.s.l.; 10 m temperature −16.75°C). The site lies on the east coast of the Antarctic Peninsula and has a continental-type climate dominated by perennial sea ice in the Weddell Sea. The core is being analysed for a range of chemical impurities, in order to assess their potential as indicators of past climate. High-resolution (10-15 samples a−1) continuous profiles of the anionic species Cl−1, NO3 − and SO4 2−, together with the cation Na+, have been measured on a section of the core from 26 to 71 m depth. The core has previously been dated between 0 and 32 m depth using the δ18O profile (Peel and others 1988). Lack of δ18O data for the section 32-71 m forced us to seek an alternative method of dating. Biogenic outgassing of sulphurous gases from the ocean and subsequent photochemical oxidation contribute an excess of sulphate over that derived from the marine aerosol. We show that excess sulphate, calculated as (concentrations in Eq. 1−1 and assuming that all measured Na+ is derived from sea salt), is highly seasonal in character, and annual horizons are well preserved over the whole of the core. This enabled us to determine the chronology to 71 m depth, and date the bottom of this section as 1844 ± 5 years. Cl− is derived mainly from sea salt. Its profile in the core is also seasonal in character, with peaks that tend to occur in late summer, reflecting the period of minimum sea-ice extent in the Weddell Sea, and therefore maximum source area for the uptake of sea salt. From instrumental meteorological records, Limbert (1974) showed that there were three extended periods of warm or cold weather in the Antarctic Peninsula between 1903 and 1944. During the two 4 year cold periods, when the summer break-up of sea ice in the Weddell Sea is likely to have been reduced, we found that the annual flux of Cl− to the Dolleman Island snow-pack was lower than the average. Conversely, the 3 year warm period showed a peak in the values of annual flux of Cl−. We therefore propose that Cl− can be used as a palaeoclimatic indicator for sea-ice extent. Extending our chloride data into the latter half of the nineteenth century (before the earliest continuous instrumental records for the Antarctic), we found three distinct peaks in the values of annual flux of Cl−. We suggest that the period 1850-60 was marked by a decrease in Weddell Sea ice extent (due perhaps to a warm period), followed by an extended period of increased sea ice. There were then two periods of much-reduced sea ice during (approximately) 1885-1890 and 1895-1900, with an intervening period of greatly increased ice coverage. These events are in good agreement with the warm and cold periods which Aristarain and others (1986) identified in the deuterium profile from James Ross Island.


1988 ◽  
Vol 11 ◽  
pp. 204-205
Author(s):  
Robert Mulvaney ◽  
David A. Peel

In January 1986, a 133 m ice core, with an estimated age at the bottom of 300-350 years, was collected (using an electromechanical drill) on Dolleman Island (70° 35.2′S, 60°55.5′ W; 398 ma.s.l.; 10 m temperature −16.75°C). The site lies on the east coast of the Antarctic Peninsula and has a continental-type climate dominated by perennial sea ice in the Weddell Sea. The core is being analysed for a range of chemical impurities, in order to assess their potential as indicators of past climate.High-resolution (10-15 samples a−1) continuous profiles of the anionic species Cl−1, NO3− and SO42−, together with the cation Na+, have been measured on a section of the core from 26 to 71 m depth. The core has previously been dated between 0 and 32 m depth using the δ18O profile (Peel and others 1988). Lack of δ18O data for the section 32-71 m forced us to seek an alternative method of dating.Biogenic outgassing of sulphurous gases from the ocean and subsequent photochemical oxidation contribute an excess of sulphate over that derived from the marine aerosol. We show that excess sulphate, calculated as(concentrations in Eq. 1−1 and assuming that all measured Na+ is derived from sea salt), is highly seasonal in character, and annual horizons are well preserved over the whole of the core. This enabled us to determine the chronology to 71 m depth, and date the bottom of this section as 1844 ± 5 years.Cl− is derived mainly from sea salt. Its profile in the core is also seasonal in character, with peaks that tend to occur in late summer, reflecting the period of minimum sea-ice extent in the Weddell Sea, and therefore maximum source area for the uptake of sea salt. From instrumental meteorological records, Limbert (1974) showed that there were three extended periods of warm or cold weather in the Antarctic Peninsula between 1903 and 1944. During the two 4 year cold periods, when the summer break-up of sea ice in the Weddell Sea is likely to have been reduced, we found that the annual flux of Cl− to the Dolleman Island snow-pack was lower than the average. Conversely, the 3 year warm period showed a peak in the values of annual flux of Cl−. We therefore propose that Cl− can be used as a palaeoclimatic indicator for sea-ice extent.Extending our chloride data into the latter half of the nineteenth century (before the earliest continuous instrumental records for the Antarctic), we found three distinct peaks in the values of annual flux of Cl−. We suggest that the period 1850-60 was marked by a decrease in Weddell Sea ice extent (due perhaps to a warm period), followed by an extended period of increased sea ice. There were then two periods of much-reduced sea ice during (approximately) 1885-1890 and 1895-1900, with an intervening period of greatly increased ice coverage. These events are in good agreement with the warm and cold periods which Aristarain and others (1986) identified in the deuterium profile from James Ross Island.


2008 ◽  
Vol 8 (11) ◽  
pp. 2985-2997 ◽  
Author(s):  
K. A. Read ◽  
A. C. Lewis ◽  
S. Bauguitte ◽  
A. M. Rankin ◽  
R. A. Salmon ◽  
...  

Abstract. In situ measurements of dimethyl sulphide (DMS) and methane sulphonic acid (MSA) were made at Halley Station, Antarctica (75°35' S, 26°19' W) during February 2004–February 2005 as part of the CHABLIS (Chemistry of the Antarctic Boundary Layer and the Interface with Snow) project. DMS was present in the atmosphere at Halley all year (average 38.1±43 pptV) with a maximum monthly average value of 113.6±52 pptV in February 2004 coinciding temporally with a minimum in sea extent. Whilst seasonal variability and interannual variability can be attributed to a number of factors, short term variability appeared strongly dependent on air mass origin and trajectory pressure height. The MSA and derived non-sea salt sulphate (nss-SO42−) measurements showed no correlation with those of DMS (regression R2=0.039, and R2=0.001 respectively) in-line with the complexity of DMS fluxes, alternative oxidation routes, transport of air masses and variable spatial coverage of both sea-ice and phytoplankton. MSA was generally low throughout the year, with an annual average of 42 ng m−3 (9.8±13.2 pptV), however MSA: nss-SO42− ratios were high implying a dominance of the addition oxidation route for DMS. Including BrO measurements into MSA production calculations demonstrated the significance of BrO on DMS oxidation within this region of the atmosphere in austral summer. Assuming an 80% yield of DMSO from the reaction of DMS+BrO, an atmospheric concentration of BrO equal to 3 pptV increased the calculated MSA production from DMS by a factor of 9 above that obtained when considering only reaction with the hydroxyl radical. These findings have significant atmospheric implications, but may also impact on the interpretation of ice cores which previously relied on the understanding of MSA and nss-SO42− chemistry to provide information on environmental conditions such as sea ice extent and the origins of sulphur within the ice.


Polar Record ◽  
1991 ◽  
Vol 27 (162) ◽  
pp. 249-253 ◽  
Author(s):  
Gotthilf Hempel

AbstractSeasonal ice of the Southern Ocean, occupying some 15 x 106 km2, supports a distinctive biota based on algae that live on, within and immediately beneath the ice floes. How this annually-forming habitat recruits its biota, and the fate of the biota after the ice thaws in late summer, are little-known. Studies in the Weddell Sea in 1984–88 have shown that the seasonal ice is important as the wintering substrate of krill Euphausia superba which, together with other zooplankton and fish, supports a large breeding population of seals and penguins. Clearly a key habitat in the economy of the Southern Ocean, this seasonal ice is likely to be vulnerable to small climatic changes.


2017 ◽  
Vol 29 (4) ◽  
pp. 299-310 ◽  
Author(s):  
Marina Monti-Birkenmeier ◽  
Tommaso Diociaiuti ◽  
Serena Fonda Umani ◽  
Bettina Meyer

AbstractSympagic microzooplankton were studied during late winter in the northern Weddell Sea for diversity, abundance and carbon biomass. Ice cores were collected on an ice floe along three dive transects and seawater was taken from under the ice through the central dive hole from which all transects were connected. The areal and vertical microzooplankton distributions in the ice and water were compared. Abundance (max. 1300 ind. l-1) and biomass (max. 28.2 µg C l-1) were high in the ice cores and low in the water below the sea ice (max. 19 ind. l-1, 0.15 µg C l-1, respectively). The highest abundances were observed in the bottom 10 cm of the ice cores. The microzooplankton community within the sea ice comprised mainly aloricate ciliates, foraminifers and micrometazoans. In winter, microzooplankton represent an important fraction of the sympagic community in the Antarctic sea ice. They can potentially control microalgal production and contribute to particulate organic carbon concentrations when released into the water column during the ice melt in spring. Continued reduction of the sea ice may undermine the roles of microzooplankton, leading to a reduction or complete loss of diversity, abundance and biomass of these sympagic protists.


MAUSAM ◽  
2021 ◽  
Vol 62 (4) ◽  
pp. 633-640
Author(s):  
SANDIP R.OZA ◽  
R.K.K. SINGH ◽  
ABHINAV SRIVASTAVA ◽  
MIHIR K.DASH ◽  
I.M.L. DAS ◽  
...  

The growth and decay of sea ice are complex processes and have important feedback onto the oceanic and atmospheric circulation. In the Antarctic, sea ice variability significantly affects the primary productivity in the Southern Ocean and thereby negatively influences the performance and survival of species in polar ecosystem. In present days, the awareness on the sea ice variability in the Antarctic is not as matured as it is for the Arctic region. The present paper focuses on the inter-annual trends (1999-2009) observed in the monthly fractional sea ice cover in the Antarctic at 1 × 1 degree level, for the November and February months, derived from QuikSCAT scatterometer data. OSCAT scatterometer data from India’s Oceansat-2 satellite were used to asses the sea ice extent (SIE) observed in the month of November 2009 and February 2010 and its deviation from climatic maximum (1979-2002) sea ice extent (CMSIE). Large differences were observed between SIE and CMSIE, however, trend results show that it is due to the high inter-annual variability in sea ice cover. Spatial distribution of trends show the existence of positive and negative trends in the parts of Western Pacific Ocean, Ross Sea, Amundsen and Bellingshausen Seas (ABS), Weddell Sea and Indian ocean sector of southern ocean. Sea ice trends are compared with long-term SST trends (1982-2009) observed in the austral summer month of February. Large-scale cooling trend observed around Ross Sea and warming trend in ABS sector are the distinct outcome of the study.


2021 ◽  
Vol 41 (1) ◽  
Author(s):  
Jacqueline Bertlich ◽  
Nikolaus Gussone ◽  
Jasper Berndt ◽  
Heinrich F. Arlinghaus ◽  
Gerhard S. Dieckmann

AbstractThis study presents culture experiments of the cold water species Neogloboquadrina pachyderma (sinistral) and provides new insights into the incorporation of elements in foraminiferal calcite of common and newly established proxies for paleoenvironmental applications (shell Mg/Ca, Sr/Ca and Na/Ca). Specimens were collected from sea ice during the austral winter in the Antarctic Weddell Sea and subsequently cultured at different salinities and a constant temperature. Incorporation of the fluorescent dye calcein showed new chamber formation in the culture at salinities of 30, 31, and 69. Cultured foraminifers at salinities of 46 to 83 only revealed chamber wall thickening, indicated by the fluorescence of the whole shell. Signs of reproduction and the associated gametogenic calcite were not observed in any of the culture experiments. Trace element analyses were performed using an electron microprobe, which revealed increased shell Mg/Ca, Sr/Ca, and Na/Ca values at higher salinities, with Mg/Ca showing the lowest sensitivity to salinity changes. This study enhances the knowledge about unusually high element concentrations in foraminifera shells from high latitudes. Neogloboquadrina pachyderma appears to be able to calcify in the Antarctic sea ice within brine channels, which have low temperatures and exceptionally high salinities due to ongoing sea ice formation.


Sign in / Sign up

Export Citation Format

Share Document