Sea-ice growth from the top: Meteoric ice and snow in the northwestern Weddell Sea, Antarctica

Author(s):  
Stefanie Arndt ◽  
Hanno Meyer ◽  
Ilka Peeken ◽  
Christian Haas

<p>Summer sea ice extent in the Weddell Sea has increased overall during the last four decades, with large interannual variations. However, the underlying causes and the related ice and snow properties are still poorly known.</p><p>Here, we present results of the interdisciplinary Weddell Sea Ice (WedIce) project carried out in the northwestern Weddell Sea on board the German icebreaker R/V Polarstern in February and March 2019, i.e. at the end of the summer ablation period, focusing on 21 ice cores sampled for texture, salinity and isotope analysis.</p><p>The ice at the coring sites had an average thickness of 178 cm with an average snow depth of 13 cm and a consistently positive freeboard. Isotope and salinity analyses revealed an average meteoric ice fraction of 23%. This included about 17% (22cm) snow-ice, saline sea ice formed by flooding and refreezing of snow at the snow/ice interface. In contrast, superimposed ice, fresh sea ice formed through melting and refreezing of snow only, account for about 6% (11cm) of the sea-ice thickness. The comparison of our results with previous expeditions to the same region shows that the thickness of superimposed ice has hardly increased, indicating no dominant changes in the amount of surface summer melt/thaw, despite the observed sea ice decline in the northwestern Weddell Sea during summer in recent years.</p><p>However, we consider the evolution of snow properties, and in particular the proportion of meteoric ice in the snow cover, as a critical indicator for significant changes in the coupled atmosphere/sea ice/ocean system.</p>

2020 ◽  
Author(s):  
Stefanie Arndt ◽  
Christian Haas ◽  
Ilka Peeken

<p>Summer sea ice extent in the Weddell Sea has increased overall during the last four decades, with large interannual variations. However, the underlying causes and the related ice and snow properties are still poorly known. Here we present results of the interdisciplinary Weddell Sea Ice (WedIce) project carried out in the northwestern Weddell Sea on board the German icebreaker R/V Polarstern in February and March 2019, i.e. at the end of the summer ablation period. This is the region of the thickest, oldest ice in the Weddell Sea, at the outflow of the Weddell Gyre. Measurements included airborne ice thickness surveys and in-situ snow and ice sampling of mostly second- and third year ice. Preliminary results show mean ice thicknesses between 2.6 and 5.4 m, increasing from the Antarctic Sound towards the Larsen B region. The ice had mostly positive ice freeboard. Mean snow thicknesses ranged between 0.05 and 0.46 m. Snow was well below the melting temperature on most days and was highly metamorphic and icy, with melt-freeze forms as dominant snow type. In addition, as a result of the summer’s thaw, an average of 0.14 m of superimposed ice was found in all ice cores drilled during the cruise. Although there was rotten ice below a solid, ca. 30 cm thick surface ice layer, pronounced gap layers typical for late summer ice in the marginal ice zone were rare, and algal biomass was patchily distributed within individual sea ice cores. Overall, there was a strong gradient of increasing ice algal biomass from the Larsen B to the Antarctic Sound region. The presented results show that sea ice conditions in the northwestern Weddell Sea are still severe and have not changed significantly since the last observations carried out in 2004 and 2006. The presence of relatively thin, icy snow has strong implications for the ice and snow mass balance, for freshwater oceanography, and for the application of remote sensing methods. Overall sea ice properties strongly affect the biological productivity of this region and limit carbon fluxes to the seafloor in the northwestern Weddell Sea.</p>


2011 ◽  
Vol 52 (57) ◽  
pp. 43-51 ◽  
Author(s):  
Donghui Yi ◽  
H. Jay Zwally ◽  
John W. Robbins

AbstractSea-ice freeboard heights for 17 ICESat campaign periods from 2003 to 2009 are derived from ICESat data. Freeboard is combined with snow depth from Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) data and nominal densities of snow, water and sea ice, to estimate sea-ice thickness. Sea-ice freeboard and thickness distributions show clear seasonal variations that reflect the yearly cycle of growth and decay of the Weddell Sea (Antarctica) pack ice. During October–November, sea ice grows to its seasonal maximum both in area and thickness; the mean freeboards are 0.33–0.41m and the mean thicknesses are 2.10–2.59 m. During February–March, thinner sea ice melts away and the sea-ice pack is mainly distributed in the west Weddell Sea; the mean freeboards are 0.35–0.46m and the mean thicknesses are 1.48–1.94 m. During May–June, the mean freeboards and thicknesses are 0.26–0.29m and 1.32–1.37 m, respectively. the 6 year trends in sea-ice extent and volume are (0.023±0.051)×106 km2 a–1 (0.45% a–1) and (0.007±0.092)×103 km3 a–1 (0.08% a–1); however, the large standard deviations indicate that these positive trends are not statistically significant.


2015 ◽  
Vol 56 (69) ◽  
pp. 107-119 ◽  
Author(s):  
Stefan Kern ◽  
Gunnar Spreen

AbstractA sensitivity study was carried out for the lowest-level elevation method to retrieve total (sea ice + snow) freeboard from Ice, Cloud and land Elevation Satellite (ICESat) elevation measurements in the Weddell Sea, Antarctica. Varying the percentage (P) of elevations used to approximate the instantaneous sea-surface height can cause widespread changes of a few to ˃10cm in the total freeboard obtained. Other input parameters have a smaller influence on the overall mean total freeboard but can cause large regional differences. These results, together with published ICESat elevation precision and accuracy, suggest that three times the mean per gridcell single-laser-shot error budget can be used as an estimate for freeboard uncertainty. Theoretical relative ice thickness uncertainty ranges between 20% and 80% for typical freeboard and snow properties. Ice thickness is computed from total freeboard using Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) snow depth data. Average ice thickness for the Weddell Sea is 1.73 ± 0.38 m for ICESat measurements from 2004 to 2006, in agreement with previous work. The mean uncertainty is 0.72 ± 0.09 m. Our comparison with data of an alternative approach, which assumes that sea-ice freeboard is zero and that total freeboard equals snow depth, reveals an average sea-ice thickness difference of ∼0.77m.


2018 ◽  
Vol 12 (11) ◽  
pp. 3459-3476 ◽  
Author(s):  
Iina Ronkainen ◽  
Jonni Lehtiranta ◽  
Mikko Lensu ◽  
Eero Rinne ◽  
Jari Haapala ◽  
...  

Abstract. While variations of Baltic Sea ice extent and thickness have been extensively studied, there is little information about drift ice thickness, distribution, and its variability. In our study, we quantify the interannual variability of sea ice thickness in the Bay of Bothnia during the years 2003–2016. We use various different data sets: official ice charts, drilling data from the regular monitoring stations in the coastal fast ice zone, and helicopter and shipborne electromagnetic soundings. We analyze the different data sets and compare them to each other to characterize the interannual variability, to discuss the ratio of level and deformed ice, and to derive ice thickness distributions in the drift ice zone. In the fast ice zone the average ice thickness is 0.58±0.13 m. Deformed ice increases the variability of ice conditions in the drift ice zone, where the average ice thickness is 0.92±0.33 m. On average, the fraction of deformed ice is 50 % to 70 % of the total volume. In heavily ridged ice regions near the coast, mean ice thickness is approximately half a meter thicker than that of pure thermodynamically grown fast ice. Drift ice exhibits larger interannual variability than fast ice.


2001 ◽  
Vol 33 ◽  
pp. 297-303 ◽  
Author(s):  
David N. Thomas ◽  
Gerhard Kattner ◽  
Ralph Engbrodt ◽  
Virginia Giannelli ◽  
Hilary Kennedy ◽  
...  

AbstractIt has been hypothesized that there are significant dissolved organic matter (DOM) pools in sea-ice systems, although measurements of DOM in sea ice have only rarely been made. The significance of DOM for ice-based productivity and carbon turnover therefore remains highly speculative. DOM within sea ice from the Amundsen and Bellingshausen Seas, Antarctica, in 1994 and the Weddell Sea, Antarctica, in 1992 and 1997 was investigated. Measurements were made on melted sea-ice sections in 1994 and 1997 and in sea-ice brines in 1992. Dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) concentrations in melted ice cores were up to 1.8 and 0.78 mM, respectively, or 30 and 8 times higher than those in surface water concentrations, respectively. However, when concentrations within the brine channel/pore space were calculated from estimated brine volumes, actual concentrations of DOC in brines were up to 23.3 mM and DON up to 2.2 mM, although mean values were 1.8 and 0.15 mM, respectively. There were higher concentrations of DOM in warm, porous summer second-year sea ice compared with colder autumn first-year ice, consistent with the different biological activity supported within the various ice types. However, in general there was poor correlation between DOC and DON with algal biomass and numbers of bacteria within the ice. The mean DOC/DON ratio was 11, although again values were highly variable, ranging from 3 to highly carbon-enriched samples of 95. Measurements made on a limited dataset showed that carbohydrates constitute on average 35% of the DOC pool, with highly variable contributions of 1−99%.


2015 ◽  
Vol 112 (15) ◽  
pp. 4570-4575 ◽  
Author(s):  
Rong Zhang

Satellite observations reveal a substantial decline in September Arctic sea ice extent since 1979, which has played a leading role in the observed recent Arctic surface warming and has often been attributed, in large part, to the increase in greenhouse gases. However, the most rapid decline occurred during the recent global warming hiatus period. Previous studies are often focused on a single mechanism for changes and variations of summer Arctic sea ice extent, and many are based on short observational records. The key players for summer Arctic sea ice extent variability at multidecadal/centennial time scales and their contributions to the observed summer Arctic sea ice decline are not well understood. Here a multiple regression model is developed for the first time, to the author’s knowledge, to provide a framework to quantify the contributions of three key predictors (Atlantic/Pacific heat transport into the Arctic, and Arctic Dipole) to the internal low-frequency variability of Summer Arctic sea ice extent, using a 3,600-y-long control climate model simulation. The results suggest that changes in these key predictors could have contributed substantially to the observed summer Arctic sea ice decline. If the ocean heat transport into the Arctic were to weaken in the near future due to internal variability, there might be a hiatus in the decline of September Arctic sea ice. The modeling results also suggest that at multidecadal/centennial time scales, variations in the atmosphere heat transport across the Arctic Circle are forced by anticorrelated variations in the Atlantic heat transport into the Arctic.


1990 ◽  
Vol 14 ◽  
pp. 350
Author(s):  
R. Mulvaney ◽  
A.P. Reid ◽  
D A. Peel

A continuous, detailed, 200-years record of the anionic species, chloride, nitrate and sulphate, has been measured on an ice core from Dolleman Island (70°35.2′ S, 60°55.5′ W), Antarctic Peninsula. The site lies on the east coast of the Peninsula, and the chemistry of the core is dominated by the changing pattern of sea-ice distribution and storm activity in the Wed dell Sea. Strong annual cycles in chloride and non sea salt sulphate reflect the dominance of the seasonal cycle in sea-ice distribution in the Weddell Sea, observed in time series derived from satellite imagery since the early 1970s. However, in the case of chloride there is also an exceptionally strong interannual variability, which in many parts of the core dominates the seasonal cycle. Secular variations in the sea-ice extent appear to have a strong influence on the climate of the region and may play a major role in determining how long-term climate change in the Antarctic Peninsula relates to global climate change. The paper examines documented evidence for sea-ice extent in the Weddell Sea sector, and evaluates the usefulness of ice-core data for reconstructing this parameter in the earlier period.


2012 ◽  
Vol 5 (2) ◽  
pp. 1627-1667 ◽  
Author(s):  
P. Mathiot ◽  
C. König Beatty ◽  
T. Fichefet ◽  
H. Goosse ◽  
F. Massonnet ◽  
...  

Abstract. Short-term and decadal sea-ice prediction systems need a realistic initial state, generally obtained using ice-ocean model simulations with data assimilation. However, only sea-ice concentration and velocity data are currently assimilated. In this work, an Ensemble Kalman Filter system is used to assimilate observed ice concentration and freeboard (i.e. thickness of emerged sea ice) data into a global coupled ocean–sea-ice model. The impact and effectiveness of our data assimilation system is assessed in two steps: firstly, through the assimilation of synthetic data (i.e., model-generated data) and, secondly, through the assimilation of satellite data. While ice concentrations are available daily, freeboard data used in this study are only available during six one-month periods spread over 2005–2007. Our results show that the simulated Arctic and Antarctic sea-ice extents are improved by the assimilation of synthetic ice concentration data. Assimilation of synthetic ice freeboard data improves the simulated sea-ice thickness field. Using real ice concentration data enhances the model realism in both hemispheres. Assimilation of ice concentration data significantly improves the total hemispheric sea-ice extent all year long, especially in summer. Combining the assimilation of ice freeboard and concentration data leads to better ice thickness, but does not further improve the ice extent. Moreover, the improvements in sea-ice thickness due to the assimilation of ice freeboard remain visible well beyond the assimilation periods.


2011 ◽  
Vol 52 (57) ◽  
pp. 347-354 ◽  
Author(s):  
Sharon B. Sneed ◽  
Paul A. Mayewski ◽  
Daniel A. Dixon

AbstractUsing results stemming from the International Trans-Antarctic Scientific Expedition (ITASE) ice-core array plus data from ice cores from the South Pole and Siple Dome we investigate the use of sodium (Na+), non-sea-salt sulfate (nssSO42–) and methylsulfonate (MS–) as proxies for Antarctic sea-ice extent (SIE). Maximum and mean annual chemistry concentrations for these three species correlate significantly with maximum, mean and minimum annual SIE, offering more information and clarification than single ice-core and single species approaches. Significant correlations greater than 90% exist between Na+ and maximum SIE; nssSO42– with minimum and mean SIE; and MS– with mean SIE. Correlations with SIE within large geographic regions are in the same direction for all ice-core sites for Na+ and nssSO42– but not MS–. All ice cores display an SIE correlation with nssSO42– and MS–, but not all correlate with Na+. This multi-core multi-parameter study provides the initial step in determining which chemical species can be used reliably and in which regions as a building block for embedding other ice-core records. Once established, the resulting temporal and spatial matrix can be used to relate ice extents, atmospheric patterns, biological productivity and site conditions.


Sign in / Sign up

Export Citation Format

Share Document