Evaluation of the joint effects of DEM resolution and calculation cell size on discharge simulation performance with two routing methods

Author(s):  
Jingjing Li ◽  
Hua Chen ◽  
Chong-Yu Xu ◽  
Haoyuan Zhao ◽  
Lu Li ◽  
...  

<p>Benefit from the easy access to gridded hydrological datasets and global Digital Elevation Model (DEM) datasets, DEM-based routing methods have been widely developed and used. The routing methods can be divided into two categories, i.e., Source-to-Sink and Cell-to-Cell. Limited by the computation capabilities, routing methods are often performed at more coarse resolution of calculation cell rather than the resolution of DEM. Both the DEM resolution and calculation cell-size are factors that affect the discharge simulation performance of routing method. Too little work has been devoted to how these two factors affect routing performance jointly. This study aims to compare the effects of DEM resolution and calculation cell-size on discharge simulation performance with two most popular routing methods, including a Cell-to-Cell routing method, i.e., Liner-reservoir-routing method (LRR) and a Source-to-Sink routing method, i.e., the improved aggregated network-response function routing method (I-NRF). They are compared/evaluated in terms of the changes of simulation performance with calculation cell-size ranging from 5 arc-minutes to 60 arc-minutes and DEM resolutions of 90 m×90 m, 250 m×250 m, 500 m×500 m, 1000 m×1000 m. Besides, two hydrological runoff-generation models and two study basins are used to test the generality of the result. The study finding will help the researchers to choose the appropriate DEM resolution, calculation cell-size and routing method in hydrological simulation.</p>

2021 ◽  
Author(s):  
Abebe Tadesse Bulti

Abstract An advancement on flood routing techniques is important for a good perdiction and forecast of the flow discharge in a river basins. Hydraulic and hydrologic routing techniques are widely applied in most simulation models separately. A combined hydrologic and hydraulic routing method is a recent approach that used to improve the modeling effort in hydrological studies. The main drawback of hydrologic routing methods was inaccuracy on downstream areas of the river basin, where the effect of hydraulic structures and the river dynamics processes are dominant. The hydraulic routing approaches are relatively good on a downstream reaches of a river. This research was done on the Awash River basin, at the upstream areas of a Koka dam. A combined hydrologic and hydraulic approach was used to assess the discharge and sediment flow in the river basin. The hydrologic routing method was applied at an upstream part of a river basin through a SWAT model. HEC-RAS model was applied at the middle and downstream areas of the study basin based on hydraulic routing principle. A combined routing method can improve the result from a simulation process and increases an accuracy on a prediction of the peak flow. It can simulate a flow discharges for both short and long-term duration, with good model performance indicators. Besides, sediment modeling was done by comparing a regression model, SWAT model, and combination of HEC-RAS and SWAT model. The result from the sediment modeling indicates that the regression model and combined model show good agreement in predicting the suspended sediment in the river basin. The integrated application of such different type of models can be one of the option for sediment modeling.


2007 ◽  
Vol 4 (1) ◽  
pp. 91-123 ◽  
Author(s):  
F. Fenicia ◽  
D. P. Solomatine ◽  
H. H. G. Savenije ◽  
P. Matgen

Abstract. Conceptual hydrologic models are useful tools as they provide an interpretable representation of the hydrologic behaviour of a catchment. Their representation of catchment's hydrological processes and physical characteristics, however, implies simplification of the complexity and heterogeneity of reality. As a result, those models often show a lack of flexibility in reproducing the vast spectrum of catchment responses. Hence, the accuracy in reproducing certain aspects of the system behaviour is often paid in terms of a lack of accuracy in the representation of other aspects. By acknowledging the structural limitations of those models, a modular approach to hydrological simulation is proposed. Instead of using a single model to reproduce the full range of catchment responses, multiple models are used, each of them assigned to a specific task. The approach is here demonstrated in the case where the different models are associated with different parameter realizations within a fixed model structure. We show that using a composite "global" model, obtained by a combination of individual "local" models, the accuracy of the simulation is improved. We argue that this approach can be useful because it partially overcomes the structural limitations that a conceptual model might exhibit. The approach is shown in application to the discharge simulation of the experimental Alzette River basin in Luxembourg, with a conceptual model that follows the structure of the HBV model.


Water ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 171 ◽  
Author(s):  
Hui Xie ◽  
Zhenyao Shen ◽  
Lei Chen ◽  
Xijun Lai ◽  
Jiali Qiu ◽  
...  

Hydrologic modeling is usually applied to two scenarios: continuous and event-based modeling, between which hydrologists often neglect the significant differences in model application. In this study, a comparison-based procedure concerning parameter estimation and uncertainty analysis is presented based on the Hydrological Simulation Program–Fortran (HSPF) model. Calibrated parameters related to base flow and moisture distribution showed marked differences between the continuous and event-based modeling. Results of the regionalized sensitivity analysis identified event-dependent parameters and showed that gravity drainage and storage outflow were the primary runoff generation processes for both scenarios. The overall performance of the event-based simulation was better than that of the daily simulation for streamflow based on the generalized likelihood uncertainty estimation (GLUE). The GLUE analysis also indicated that the performance of the continuous model was limited by several extreme events and low flows. In the event-based scenario, the HSPF model performances decreased as the precipitation became intense in the event-based modeling. The structure error of the HSFP model was recognized at the initial phase of the rainfall-event period. This study presents a valuable opportunity to understand dominant controls in different hydrologic scenario and guide the application of the HSPF model.


2019 ◽  
Vol 20 (9) ◽  
pp. 1925-1940 ◽  
Author(s):  
Gerhard Smiatek ◽  
Harald Kunstmann

Abstract With large elevation gradients and high hydrometeorological variability, Alpine catchments pose special challenges to hydrological climate change impact assessment. Data from seven regional climate models run within the Coordinated Regional Climate Downscaling Experiments (CORDEX), each driven with a different boundary forcing, are used to exemplarily evaluate the reproduction of observed flow duration curves and access the future discharge of the Ammer River located in Alpine southern Germany applying the hydrological simulation model called the Water Flow and Balance Simulation Model (WaSiM). The results show that WaSiM reasonably reproduces the observed runoff for the entire catchment when driven with observed precipitation. When applied with CORDEX evaluation data (1989–2008) forced by ERA-Interim, the simulations underestimate the extreme runoff and reproduce the high percentile values with errors in the range from −37% to 55% with an ensemble mean of around 15%. Runs with historical data 1975–2005 reveal larger errors, up to 120%, with an ensemble mean of around 50% overestimation. Also, the results show a large spread between the simulations, primarily resulting from deficiencies in the precipitation data. Results indicate future changes for 2071–2100 in the 99.5th percentile runoff value of up to 9% compared to 1975–2005. An increase in high flows is also supported by flow return periods obtained from a larger sample of highest flows over 50 years, which reveals for 2051–2100 lower return periods for high runoff values compared to 1956–2005. Obtained results are associated with substantial uncertainties leading to the conclusion that CORDEX data at 0.11° resolution are likely inadequate for driving hydrologic analyses in mesoscale catchments that require a high standard of fidelity for hydrologic simulation performance.


2019 ◽  
Vol 9 (18) ◽  
pp. 3690 ◽  
Author(s):  
Daeryong Park ◽  
Huan-Jung Fan ◽  
Jun-Jie Zhu ◽  
Sang-Eun Oh ◽  
Myoung-Jin Um ◽  
...  

This study analyzed the result of parameter optimization using the digital elevation model (DEM) resolution in the TOPography-based hydrological MODEL (TOPMODEL). Also, this study investigated the sensitivity of the TOPMODEL efficiency by applying the varying resolution of the DEM grid cell size. This work applied TOPMODEL to two mountainous watersheds in South Korea: the Dongkok watershed in the Wicheon river basin and the Ieemokjung watershed in the Pyeongchang river basin. The DEM grid cell sizes were 5, 10, 20, 40, 80, 160, and 300 m. The effect of DEM grid cell size on the runoff was investigated by using the DEM grid cell size resolution to optimize the parameter sets. As the DEM grid cell size increased, the estimated peak discharge was found to increase based on different parameter sets. In addition, this study investigated the DEM grid cell size that was most reliable for use in runoff simulations with various parameter sets in the experimental watersheds. The results demonstrated that the TOPMODEL efficiencies in both the Dongkok and Ieemokjung watersheds rarely changed up to a DEM grid-size resolution of about 40 m, but the TOPMODEL efficiencies changed with the coarse resolution as the parameter sets were changed. This study is important for understanding and quantifying the modeling behaviors of TOPMODEL under the influence of DEM resolution based on different parameter sets.


2012 ◽  
Vol 32 (12) ◽  
pp. 3754-3763 ◽  
Author(s):  
邱临静 QIU Linjing ◽  
郑粉莉 ZHENG Fenli ◽  
YIN Runsheng YIN Runsheng

2020 ◽  
Author(s):  
Mohamed I. Ahmed ◽  
Amin Elshorbagy ◽  
Alain Pietroniro

<p>The hydrography of the prairie basins is complicated by the existence of numerous land depressions, known as prairie potholes, which can retain a substantial amount of surface runoff. Consequently, the runoff production in the prairies follows a fill, spill, and merging mechanism, which results in a dynamic contributing area that makes the streamflow simulation challenging. Existing approaches to represent the potholes’ dynamics, in different hydrological models, use either a lumped or a series of reservoirs that contribute flow after exceeding a certain storage threshold. These approaches are simplified and do not represent the actual dynamics of the potholes nor their spatial water extents. Consequently, these approaches may not be useful in capturing the potholes’ complexities and may not be able to accurately simulate the complex prairie streamflow. This study advances towards more accurate and physically-based streamflow simulation in the prairies by implanting a physically-based runoff generation algorithm (Prairie Region Inundation MApping, PRIMA model) within the MESH land surface model, and is referred to as MESH-PRIMA. PRIMA is a recently developed hydrological routing model that can simulate the lateral movement of water over prairie landscape using topographic data provided via DEMs. In MESH-PRIMA, MESH handles the vertical water balance calculations, whereas PRIMA routes the water and determines the amount of water storage and surface runoff. The streamflow simulations of MESH-PRIMA (using different DEM resolution as a topographic input) and MESH with its existing conceptual pothole dynamics algorithm are tested on a number of pothole-dominated watersheds within Saskatchewan, Canada, and compared against observed flows. MESH-PRIMA provides improved streamflow and peak flow simulation, compared to that of MESH with its conceptual pothole algorithm, based on the metrics evaluated for the simulations. MESH-PRIMA shows potential for simulating the actual pothole water extents when compared against water areas obtained from remote sensing data. The use of different DEM resolution changes the resulting pothole water extent, especially for the small potholes as they are not detected in the coarse DEM. MESH-PRIMA can be considered as a hydraulic-hydrologic model that can be used for better understanding and accurate representation of the complex prairie hydrology.</p>


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Pengnian Huang ◽  
Zhijia Li ◽  
Cheng Yao ◽  
Qiaoling Li ◽  
Meichun Yan

There exist two types of direct runoff generation mechanisms in semihumid watersheds: saturation-excess mechanism and infiltration-excess mechanism. It has always been a difficult problem for event hydrological simulation to distinguish the two types of runoff processes. Based on the concept of dominant runoff processes, combined with GIS and RS techniques, this paper proposed an event-based spatial combination modeling framework and built two spatial combination models (SCMs) accordingly. The CN parameter and topographic index, both of which are widely used in hydrological researches, are adopted by the SCM to divide the entire watershed into infiltration-excess dominated (IED) areas and saturation-excess dominated (SED) areas. Dongwan watershed was taken as an example to test the performances of infiltration-excess model, saturation-excess model, and SCM, respectively. The results of parameter optimization showed that the parameter values and state variables of SCM are much more realistic than those of infiltration-excess model and saturation-excess model. The more accurate the divisions of infiltration-excess and saturation-excess dominated areas, the more realistic the SCM parameter values. The simulation results showed that the performance of SCM was improved in both calibration and validation periods. The framework is useful for flood forecasting in semihumid watersheds.


2017 ◽  
Author(s):  
Ang Zhang ◽  
Haiyun Shi ◽  
Tiejian Li ◽  
Xudong Fu

Abstract. Rainfall stations with a certain number and spatial distribution supply sampling records of rainfall processes in a river basin. Uncertainty may be introduced when the station records are spatially interpolated for the purpose of hydrological simulations. This study adopts a bootstrap method to quantitatively estimate the uncertainty of areal rainfall estimates and its effects on hydrological simulations. The observed rainfall records are first analysed using clustering and correlation methods, and possible average basin rainfall amounts are calculated with a bootstrap method using various combinations of rainfall station subsets. Then, the uncertainty of simulated runoff, which is propagated through a hydrological model from the spatial uncertainty of rainfall estimates, is analysed with the bootstrapped rainfall inputs. By comparing the uncertainties of rainfall and runoff, the responses of the hydrological simulation to the spatial uncertainty of rainfall are discussed. Analyses are performed for three rainfall events in the upstream of the Qingjian River basin, a sub-basin of the Yellow River. Using the Digital Yellow River Integrated Model, the results show that the uncertainty of rainfall estimates derived from rainfall station network has a direct influence on simulated runoff processes. This quantified relationship between rainfall input and simulation performance can provide useful information on managing rainfall station density in river basins. The proposed method could be a guide to quantify an approximate range of simulated error caused by the spatial uncertainty of rainfall input.


2021 ◽  
Vol 67 (No. 4) ◽  
pp. 165-174
Author(s):  
Vahid Gholami ◽  
Mohammad Reza Khaleghi

Simulation of the runoff-rainfall process in forest lands is essential for forest land management. In this research, a hydrologic modelling system (HEC-HMS) and artificial neural network (ANN) were applied to simulate the rainfall-runoff process (RRP) in forest lands of Kasilian watershed with an area of 68 square kilometres. The HMS model was performed using the secondary data of rainfall and discharge at the climatology and hydrometric stations, the Soil Conservation Service (SCS) for simulating a flow hydrograph, the curve number (CN) method for runoff estimation, and lag time method for flow routing. Further, a multilayer perceptron (MLP) network was used for simulating the rainfall-runoff process. HEC-HMS model was used to optimize the initial loss (IL) values in the rainfall-runoff process as an input. IL reflects the conditions of vegetation, soil infiltration, and antecedent moisture condition (AMC) in soil. Then, IL values and also incremental rainfall were applied as inputs into ANN to simulate the runoff values. The comparison of the results of simulating the RRP in two scenarios, using IL and without IL, showed that the IL parameter has a high effect in increasing the simulation performance of the rainfall-runoff process. Moreover, ANN predictions were more precise in comparison with those of the HMS model. Further, forest lands can significantly increase IL values and decrease runoff generation.


Sign in / Sign up

Export Citation Format

Share Document