Interactions between liming and availability of C and P regulate nitrogen transformations and denitrifying potential in an acidic arable soil

Author(s):  
Zhi Liang ◽  
Diego Abalos ◽  
Lars Elsgaard

<p>Liming to increase pH of acidic soils is a common agricultural practice to optimize crop yields, which also modulates greenhouse gas emissions from soils. In particular, soil pH has been identified as a primary regulator of denitrification pathways with enhanced ratio of nitrous oxide (N<sub>2</sub>O) to dinitrogen (N<sub>2</sub>) emissions (i.e., enhanced N<sub>2</sub>O/N<sub>2</sub> ratio) at lower soil pH. Therefore liming could represent a potential management option to mitigate soil N<sub>2</sub>O emissions. However, changes in soil pH have pervasive effects on general microbial activity and on soil properties, including transformations of carbon (C) and bioavailability of phosphorus (P), with a feedback on microbial processes. Thus, the eventual net effects of liming on microbially derived N<sub>2</sub>O emissions may be complex. The aim of this study was to discern the interaction between liming (soil pH), and availability of C and P in regulating N<sub>2</sub>O emissions from acidic fertilized agroecosystems. Using coarse sandy soils from a long-term liming field experiment, N<sub>2</sub>O/N<sub>2</sub> ratios from denitrifying enzyme activity was shown to be strongly affected by liming, i.e., with gradually decreasing ratios at increasing soil pH. Although liming acidic soil (pH, 3.6) to almost neutral (pH, 6.4) favored the reduction of N<sub>2</sub>O to N<sub>2</sub>, it also enhanced the overall denitrification rate, which eventually resulted in the highest N<sub>2</sub>O emission from moderately limed treatments (pH, 4.7). Interactions between P availability and denitrification (and N<sub>2</sub>O emission) occurred, where P addition generally increased cumulative N<sub>2</sub>O emissions with strongest effect at the moderately limed soil. Mechanistic hypotheses for this effect are discussed. Overall, our results suggest that a critical liming rate should be pursued which may lead to substantial mitigation of N<sub>2</sub>O emissions from acidic arable soil.</p>

Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2429
Author(s):  
Xiaoru Fan ◽  
Zekai Chen ◽  
Zihan Niu ◽  
Ruiyao Zeng ◽  
Jingmin Ou ◽  
...  

Synthetic nitrogen fertilizer substitution (NSS) with different types of organic material is a cleaner agricultural practice for reducing the application of synthetic N input in farmlands while also relieving the environmental issues caused by the discharge of organic wastes. However, the effects of the NSS practice on crop yields, being the primary objective of agricultural activity, is still uncertain in China. This study conducted a meta-analysis to assess the impacts of the NSS practices with different types of organic materials on crop yields. Results showed that the average crop yield was increased by 3.4%, with significant differences under NSS, thereby demonstrating that this practice contributed to improving crop yields, especially of rice and maize. According to published reports, the NSS practices involving chicken manure, pig manure, and crop straw increased crop yields by 4.79, 7.68, and 3.28%, respectively, with significant differences, thus demonstrating the superior effects needed for replacing synthetic N fertilizer. Moreover, substitution ratios (SR) between 0% and 60% could be suggested when using the NSS practice, with the high SR recommended when the original soil fertility was adequate for crops. Considering the long-term effects of applied organic materials, improving the grain yield with the NSS practice should be expected in the long-term. By effectively applying the NSS, this study attempted to scientifically decide on the type of organic materials and the appropriate SR based on the conditions of the soil and the crop. The results provide research information for the development of clean agricultural production and food security in China.


Soil Research ◽  
2001 ◽  
Vol 39 (6) ◽  
pp. 1307 ◽  
Author(s):  
F. P. Valzano ◽  
B. W. Murphy ◽  
R. S. B. Greene

In 1994 a long-term field trial with 9 lime–gypsum combinations and 2 tillage treatments (reduced tillage and direct drill) was established on a sodic red-brown earth soil [surface pH(water) 6.5] at a property near Peak Hill, NSW, Australia. The lime-gypsum treatments were: L0G0 (lime 0 t/ha, gypsum 0 t/ha), L0G1, L0G2.5, L0G5, L1G0, L2.5G0, L5G0, L1G1, and L2.5G1. After 3 years, higher rates of lime and gypsum or their combinations significantly (P < 0.01) increased exchangeable and soluble calcium and decreased exchangeable and soluble sodium in the 0–100 mm layer of the soil. Gypsum was found to decrease the total soluble cation concentration (TCC) in some instances, while lime maintained TCC at 1995 levels. Soil pH was significantly higher on all lime plots and electrical conductivity was slightly higher on plots treated with lime than on control plots. Organic carbon levels were significantly higher in plots with gypsum and high levels of the lime–gypsum combination (L2.5G1). The effectiveness of the lime treatments was influenced by the initial soil pH (as suggested by the findings of other studies). The lime, and to a lesser extent the gypsum treatments, improved the physical properties of the soil as measured by the Emerson aggregate test, penetrometer resistance, infiltration, and water availability. A tillage effect was also present resulting in less dispersion, decreased penetrometer resistance, and higher infiltration rates in plots prepared with reduced tillage practices than direct drill plots. Plant-available water content (AWC) was significantly higher in the surface soil of plots treated with L2.5G1 than control treatments. The L5G0 and L0G5 treatments did not significantly improve the AWC. Crop yields were increased by some of the lime–gypsum treatments in both 1995 and 1996. Corresponding with the increased AWC, the L2.5G1 treatment produced the highest crop yields. Plots with reduced tillage had consistently higher yields than those with direct drill treatment.


2021 ◽  
Author(s):  
Victoria Janes-Bassett ◽  
Phil Haygarth ◽  
Martin Blackwell ◽  
Malika Mezeli ◽  
Gavin Stewart ◽  
...  

&lt;p&gt;Phosphorus is closely linked to other nutrient cycles, notably carbon and nitrogen, therefore, to understand potential risks to food production models are required that simulate integrated nutrient cycling over long timescales. The soil-plant system model N14CP meets these requirements and simulates both semi-natural and agricultural environments. N14CP has been validated both spatially and temporally across a range of long-term agricultural experimental sites comparing soil C, N and P, and crop yields, and in most instances performs well. However, under experimental conditions where N is applied in the absence of P, the model indicates exhaustion of P reserves and a decline in yields that is not observed at these sites, highlighting a gap in the model process representation. Potential sources of this &amp;#8216;missing P&amp;#8217; such as enhanced atmospheric deposition, weathering and flexible plant stoichiometries were explored yet cannot account for this deficit. We hypothesise that access of organic P through other mechanisms not fully represented within the model, such as phosphatase enzymes, could be part of this explanation.&lt;/p&gt;&lt;p&gt;In order to test this, we conducted a meta-analysis of phosphatase enzyme activity in agricultural settings, comparing response to P sufficient and deficient conditions. Results suggest phosphatase enzyme activity is higher in P deficient conditions compared to inorganic P addition, yet lower compared to organic P addition. Meta-regression analysis indicates magnitude of P addition and pH of substrate are significant factors influencing enzyme response. However, due to numerous additional processes and adaption strategies in response to P deficiency and the difficulty isolating the role of phosphatase enzymes it is not possible to determine the degree to which this mechanism alone accounts for the missing P. We discuss the continuing need for additional empirical evidence to understand the cycling of organic P, and the development of models to include these processes to inform sustainable land management and ensure long-term food security.&lt;/p&gt;


1995 ◽  
Vol 31 (3) ◽  
pp. 325-332 ◽  
Author(s):  
P. K. Kwakye ◽  
E. A. Dennis ◽  
A. E. Asmah

SummaryPhosphorus, followed by potassium, were the plant nutrients that most limited yields during the third decade of a long-term fertilizer experiment on groundnut, maize and cassava conducted on an Ultisol in Ghana. Application of sulphate of ammonia significantly decreased soil pH, thus reducing crop yields. Superphosphate or mulch applied alone consistently increased the yields of all three crops. Application of potash increased the yield of cassava throughout the cropping period, but the potash × mulch interaction depressed yields in two of the three cropping seasons. Use of crop rotation, grass mulch and fertilizer, including small amounts of lime, enabled crop yields and soil fertility to be maintained at a fairly high level under continuous cropping.


2013 ◽  
Vol 12 (11) ◽  
pp. 2092-2102 ◽  
Author(s):  
Hong-qi MENG ◽  
Ming-gang XU ◽  
Jia-long LÜ ◽  
Xin-hua HE ◽  
Jian-wei LI ◽  
...  

2019 ◽  
Vol 103 (1) ◽  
pp. 43-45 ◽  
Author(s):  
Carlos Crusciol ◽  
João Rigon ◽  
Juliano Calonego ◽  
Rogério Soratto

Some crop species could be used inside a cropping system as part of a strategy to increase soil P availability due to their capacity to recycle P and shift the equilibrium between soil P fractions to benefit the main crop. The release of P by crop residue decomposition, and mobilization and uptake of otherwise recalcitrant P are important mechanisms capable of increasing P availability and crop yields.


2021 ◽  
Vol 11 (10) ◽  
pp. 4628
Author(s):  
Macarena Iniesta-Pallarés ◽  
Consolación Álvarez ◽  
Francisco M. Gordillo-Cantón ◽  
Carmen Ramírez-Moncayo ◽  
Pilar Alves-Martínez ◽  
...  

Current agricultural productivity depends on an exogenous nutrient supply to crops. This is of special relevance in cereal production, a fundamental part of the trophic chain that plays a vital role in the human diet. However, our agricultural practices entail highly detrimental side-effects from an environmental point of view. Long-term nitrogen fertilization in croplands results in degradation of soil, water, and air quality, producing eutrophication and subsequently contributing to global warming. In accordance with this, there is a biotechnological interest in using nitrogen-fixing microorganisms to enhance crop growth without adding chemically synthesized nitrogen fertilizers. This is particularly beneficial in paddy fields, where about 60% of the synthetic fertilizer that has been applied is dissolved in the water and washed away. In these agricultural systems, N2-fixing cyanobacteria show a promising biotechnological potential as biofertilizers, improving soil fertility while reducing the environmental impact of the agricultural practice. In the current study, Andalusian paddy fields have been explored to isolate N2-fixing cyanobacteria. These endogenous microorganisms have been subsequently re-introduced in a field trial in order to enhance rice production. Our results provide valuable insights regarding the use of an alternative natural source of nitrogen for rice production.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yang Su ◽  
Benoit Gabrielle ◽  
Damien Beillouin ◽  
David Makowski

AbstractConservation agriculture (CA) has been promoted to mitigate climate change, reduce soil erosion, and provide a variety of ecosystem services. Yet, its impacts on crop yields remains controversial. To gain further insight, we mapped the probability of yield gain when switching from conventional tillage systems (CT) to CA worldwide. Relative yield changes were estimated with machine learning algorithms trained by 4403 paired yield observations on 8 crop species extracted from 413 publications. CA has better productive performance than no-till system (NT), and it stands a more than 50% chance to outperform CT in dryer regions of the world, especially with proper agricultural management practices. Residue retention has the largest positive impact on CA productivity comparing to other management practices. The variations in the productivity of CA and NT across geographical and climatical regions were illustrated on global maps. CA appears as a sustainable agricultural practice if targeted at specific climatic regions and crop species.


Sign in / Sign up

Export Citation Format

Share Document