Crustal density structure of the Antarctic continent from constrained 3-D gravity inversion

Author(s):  
Fei Ji ◽  
Qiao Zhang

<p>Crustal density is a fundamental physical parameter that helps to reveal its composition and structure, and is also significantly related to the tectonic evolution and geodynamics. Based on the latest Bouguer gravity anomalies and the constrains of 3-D shear velocity model and surface heat flow data, the 3-D gravity inversion method, incorporating deep weight function, has been used to obtain the refined density structure over the Antarctic continent. Our results show that the density anomalies changes from -0.25 g/cm<sup>3</sup> to 0.20 g/cm<sup>3</sup>. Due to the multi-phase extensional tectonics in Mesozoic and Cenozoic, the low density anomalies dominates in the West Antarctica, while the East Antarctica is characterized by high values of density anomalies. By comparing with the variations of effective elastic thickness, the inverted density structure correlates well with the lithospheric integrated strength. According to the mechanical strength and inverted density structure in the West Antarctic Rift System (WARS), our analysis found that except for the local area affected by the Cenozoic extension and magmatic activity, the crustal thermal structure in the WARS tends to be normal under the effect of heat dissipation. Finally, the low density anomalies features in West Antarctica extend to beneath the Transantarcitc Mountains (TAMs), however, we hypothesize that a single rift mechanism seems not be used to explain the entire TAMs range.</p>

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1497
Author(s):  
Guangliang Yang ◽  
Chongyang Shen ◽  
Hongbo Tan ◽  
Jiapei Wang

The Barkam–Jiuzhaigou–Wuqi gravity profile extends across the Jiuzhaigou Ms7.0 earthquake (in 2017) zone and passes through several historical big earthquakes’ zones. We have obtained Bouguer gravity anomalies along the profile composed of 365 gravity observation stations with Global Positioning System (GPS) coordinates, analyzed the observed data and inverted subsurface density structure. The results show that the Moho depth has a big lateral variation from southwest to northeast, which shallows from 57 km to 43 km with maximum variation up to 14 km within 800 km. The most acute depth change of the Moho is in the boundary region between the Bayan Har block and West Qinling–Qilian block. According to our analysis, it is related to the eastward movement of the Bayan Har block. There are three main pieces of evidence that support it: (1) Density is higher in the east of the Bayan Har block and smaller in the west, which is the same as seismic activity; (2) Two thin low-density layers exist in the upper and middle crust of the Bayan Har block, which may promote inter-layer slip and the Jiuzhaigou Ms7.0 earthquake occurred in the boundary area of the two low-density layers, where the crustal density and Moho surface fluctuate sharply; (3) the GPS velocity field in the southwestern part gravity profile is significantly larger than that of the northeastern part, which is consistent with the density structure. Our studies also suggest that the large undulation of the Moho prevents the movement of the Bayan Har block, and strain is prone to accumulate here. The dynamic background analysis of the crust in this area indicates that the Moho surface uplifts in the West Qinling–Qilian block, which decelerates the eastern migration of material on the Qinghai–Tibet Plateau, and leads to the weak tectonic activity of the north part of the Bayan Har block.


2010 ◽  
Vol 42 (3) ◽  
pp. 339-346 ◽  
Author(s):  
Andreas ENGELEN ◽  
Peter CONVEY ◽  
Sieglinde OTT

AbstractCoal Nunatak is an ice-free inland nunatak located on southern Alexander Island, adjacent to the west coast of the Antarctic Peninsula. Situated close to the Antarctic continent, it is characterized by harsh environmental conditions. Macroscopic colonization is restricted to micro-niches offering suitable conditions for a small number of lichens and mosses. The extreme environmental conditions place particular pressures on colonizers. Lepraria borealis is the dominant crustose lichen species present on Coal Nunatak, and shows distinctive features in its life history strategy, in particular expressing unusually low selectivity of the mycobiont towards potential photobionts. To assess selectivity, we measured algal DNA sequence polymorphism in a region of 480–660 bp of the nuclear internal transcribed spacer region of ribosomal DNA. We identified three different photobiont species, belonging to two different genera. We interpret this strategy as being advantageous in facilitating the colonization and community dominance of L. borealis under the isolation and extreme environmental conditions of Coal Nunatak.


2021 ◽  
Author(s):  
Hannah Dawson ◽  
Adele Morrison ◽  
Veronica Tamsitt ◽  
Matthew England

<p><span xml:lang="EN-US" data-contrast="auto"><span>The Antarctic margin is surrounded by two westward flowing currents: the Antarctic Slope Current and the Antarctic Coastal Current. The former influences key processes near the Antarctic margin by regulating the flow of heat and nutrients onto and off the continental shelf, while together they </span></span><span xml:lang="EN-US" data-contrast="auto"><span>advect</span></span><span xml:lang="EN-US" data-contrast="auto"><span> nutrients, biological organisms, and temperature and salinity anomalies around the coastline, providing a connective link between different shelf regions. However, the extent to which these currents transport water from one sector of the continental shelf to another, and the timescales over which this occurs, remain poorly understood. Concern that crucial water formation sites around the Antarctic coastline could respond to non-local freshwater forcing </span></span><span><span xml:lang="EN-US" data-contrast="auto"><span>from ice shel</span></span></span><span><span xml:lang="EN-US" data-contrast="auto"><span>f meltwater</span></span></span> <span xml:lang="EN-US" data-contrast="auto"><span>motivates a more thorough understanding of zonal connectivity around Antarctica. In this study, we use daily velocity fields from a global high-resolution ocean-sea ice model, combined with the <span>Lagrangian</span> tracking software Parcels, to investigate the pathways and timescales connecting different regions of the Antarctic continental shelf<span> with a view to understanding</span><span> the timescales of meltwater transport around the continent</span>. Virtual particles are released over the continental shelf, poleward of the 1000 <span>metre</span> isobath, and are tracked for 20 years. Our results show a strong seasonal cycle connecting different sectors of the Antarctic continent, with more particles arriving further downstream during winter than during summer months. Strong advective links exist between West Antarctica and the Ross Sea while shelf geometry in some other regions acts as barriers to transport. We also highlight the varying importance of the Antarctic Slope Current and Antarctic Coastal Current in connecting different sectors of the coastline. Our results help to improve our understanding of circum-Antarctic connectivity <span>and the timescales </span><span>of meltwater transport from source regions to downstream </span><span>shelf locations. </span><span>Further</span><span>more, t</span><span>he timescales and pathways we </span><span>present </span><span>p</span>rovide a baseline from which to assess long-term changes in Antarctic coastal circulation due to local and remote forcing.<br></span></span></p>


2020 ◽  
Author(s):  
Donald Blankenship ◽  
Enrica Quatini ◽  
Duncan Young

<p>A combination of aerogeophysics, seismic observations and direct observation from ice cores and subglacial sampling has revealed at least 21 sites under the West Antarctic Ice sheet consistent with active volcanism (where active is defined as volcanism that has interacted with the current manifestation of the West Antarctic Ice Sheet). Coverage of these datasets is heterogenous, potentially biasing the apparent distribution of these features. Also, the products of volcanic activity under thinner ice characterized by relatively fast flow are more prone to erosion and removal by the ice sheet, and therefore potentially underrepresented. Unsurprisingly, the sites of active subglacial volcanism we have identified often overlap with areas of relatively thick ice and slow ice surface flow, both of which are critical conditions for the preservation of volcanic records. Overall, we find the majority of active subglacial volcanic sites in West Antarctica concentrate strongly along the crustal thickness gradients bounding the central West Antarctic Rift System, complemented by intra-rift sites associated with the Amundsen Sea to Siple Coast lithospheric transition.</p>


2015 ◽  
Vol 28 (15) ◽  
pp. 5922-5934 ◽  
Author(s):  
Naiming Yuan ◽  
Minghu Ding ◽  
Yan Huang ◽  
Zuntao Fu ◽  
Elena Xoplaki ◽  
...  

Abstract In this study, observed temperature records of 12 stations from Antarctica island, coastline, and continental areas are analyzed by means of detrended fluctuation analysis (DFA). After Monte Carlo significance tests, different long-term climate memory (LTM) behaviors are found: temperatures from coastal and island stations are characterized by significant long-term climate memory whereas temperatures over the Antarctic continent behave more like white noise, except for the Byrd station, which is located in the West Antarctica. It is argued that the emergence of LTM may be dominated by the interactions between local weather system and external slow-varying systems (ocean), and therefore the different LTM behaviors between temperatures over the Byrd station and that over other continental stations can be considered as a reflection of the different climatic environments between West and East Antarctica. By calculating the trend significance with the effect of LTM taken into account, and further comparing the results with those obtained from assumptions of autoregressive (AR) process and white noise, it is found that 1) most of the Antarctic stations do not show any significant trends over the past several decades, and 2) more rigorous trend evaluation can be obtained if the effect of LTM is considered. Therefore, it is emphasized that for air temperatures over Antarctica, especially for the Antarctica coastline, island, and the west continental areas, LTM is nonnegligible for trend evaluation.


2020 ◽  
Vol 6 (24) ◽  
pp. eaaz1490
Author(s):  
Sang-Yoon Jun ◽  
Joo-Hong Kim ◽  
Jung Choi ◽  
Seong-Joong Kim ◽  
Baek-Min Kim ◽  
...  

Recent Antarctic surface climate change has been characterized by greater warming trends in West Antarctica than in East Antarctica. Although this asymmetric feature is well recognized, its origin remains poorly understood. Here, by analyzing observation data and multimodel results, we show that a west-east asymmetric internal mode amplified in austral winter originates from the harmony of the atmosphere-ocean coupled feedback off West Antarctica and the Antarctic terrain. The warmer ocean temperature over the West Antarctic sector has positive feedback, with an anomalous upper-tropospheric anticyclonic circulation response centered over West Antarctica, in which the strength of the feedback is controlled by the Antarctic topographic layout and the annual cycle. The current west-east asymmetry of Antarctic surface climate change is undoubtedly of natural origin because no external factors (e.g., orbital or anthropogenic factors) contribute to the asymmetric mode.


2021 ◽  
pp. M55-2019-3
Author(s):  
Enrica Quartini ◽  
Donald D. Blankenship ◽  
Duncan A. Young

AbstractA combination of aerogeophysics, seismic observations and direct observation from ice cores, and subglacial sampling, has revealed at least 21 sites under the West Antarctic Ice Sheet consistent with active volcanism (where active is defined as volcanism that has interacted with the current manifestation of the West Antarctic Ice Sheet). Coverage of these datasets is heterogeneous, potentially biasing the apparent distribution of these features. Also, the products of volcanic activity under thinner ice characterized by relatively fast flow are more prone to erosion and removal by the ice sheet, and therefore potentially under-represented. Unsurprisingly, the sites of active subglacial volcanism that we have identified often overlap with areas of relatively thick ice and slow ice surface flow, both of which are critical conditions for the preservation of volcanic records. Overall, we find the majority of active subglacial volcanic sites in West Antarctica concentrate strongly along the crustal-thickness gradients bounding the central West Antarctic Rift System, complemented by intra-rift sites associated with the Amundsen Sea–Siple Coast lithospheric transition.


2021 ◽  
Author(s):  
Tom Jordan ◽  
Teal Riley ◽  
Christine Siddoway

<p>West Antarctica developed as the tectonically active margin separating East Antarctica and the Pacific Ocean for almost half a billion years. Its dynamic history of magmatism, continental growth and fragmentation are recorded in sparse outcrops, and revealed by regional geophysical patterns. Compared with East Antarctica, West Antarctica is younger, more tectonically active and has a lower average elevation. We identify three broad physiographic provinces within West Antarctica and present their overlapping and interconnected tectonic and geological history as a framework for future study: 1/ The Weddell Sea region, which lay furthest from the subducting margin, but was most impacted by the Jurassic initiation of Gondwana break-up. 2/ Marie Byrd Land and the West Antarctic rift system which developed as a broad Cretaceous to Cenozoic continental rift system, reworking a former convergent margin. 3/ The Antarctic Peninsula and Thurston Island which preserve an almost complete magmatic arc system. We conclude by briefly discussing the evolution of the West Antarctic system as a whole, and the key questions which need to be addressed in future. One such question is whether West Antarctica is best conceived as an accreted collection of rigid microcontinental blocks (as commonly depicted) or as a plastically deforming and constantly growing melange of continental fragments and juvenile magmatic regions. This distinction is fundamental to understanding the tectonic evolution of young continental lithosphere. Defining the underlying geological template of West Antarctica and constraining its linkages to the dynamics of the overlying ice sheet, which is vulnerable to change due to human activity, is of critical importance.</p>


2018 ◽  
Vol 31 (10) ◽  
pp. 3865-3874 ◽  
Author(s):  
Ryan L. Fogt ◽  
Logan N. Clark ◽  
Julien P. Nicolas

This study presents a new monthly pressure dataset poleward of 60°S, from 1957 to 2016, based on a kriging interpolation from observed pressure anomalies across the Antarctic continent. Overall, the reconstruction performs well when evaluated against ERA-Interim. In comparison to other reanalyses, the reconstruction has interannual variability after 1970 similar to products that span the entire twentieth century and is a marked improvement on the first-generation reanalysis products. The reconstruction also produces weaker pressure trends than the reanalysis products evaluated here, which are consistent with observations. However, the skill of the reconstruction is weaker in the South Pacific and therefore does not improve the understanding of long-term pressure variability and trends in this region, where circulation changes have been key drivers of climate variability in West Antarctica and the Antarctic Peninsula.


Sign in / Sign up

Export Citation Format

Share Document