Sensitivity of Atmosphere-Ocean Interactions during Cold Air Outbreaks to Characteristics of the Sea-Ice Edge

Author(s):  
Thomas Spengler ◽  
Clemens Spensberger

<p>Cold air outbreaks play a crucial role in the air-sea heat exchange in the higher latitudes. However, we still lack some basic understanding about the sensitivities of these phenomena to latent heating and the role of coupling to the ocean. Despite increasing model resolution, reliable forecasts of these events remain a challenge because of the vast range of scales and physical processes involved. To further explore these sensitivities and dependence on model representation, we couple a moist convective atmospheric boundary layer model with an ocean mixed layer model to investigate the response of moist convection as well as ocean mixing during cold air outbreaks. In addition, we perform sensitivity experiments based on the PolarWRF model in an idealised configuration to represent cold air outbreaks.</p><p>Varying sea ice concentration and resolution alters the distribution and intensity of the air-sea heat exchange with ramifications for mixed layer depths in both the atmosphere and ocean. Furthermore, integrated and local sensible and latent heat fluxes depend on the model resolution as well as the distribution of the sea-ice concentration in the marginal ice zone. While surface sensible heat fluxes appear to be rather consistent across different model resolutions, surface latent heat fluxes respond to the organisation of convection at higher resolutions, a feature that is absent for coarser model grids. Different geometries replacing a straight sea-ice edge with various simple geometrical shapes are also tested. Our results have implications for numerical weather prediction and climate models, in particular regarding model resolution and the degree of coupling for the representation of air-sea interaction during cold air outbreaks.</p>


2018 ◽  
Vol 10 (2) ◽  
pp. 317 ◽  
Author(s):  
Xiaoping Pang ◽  
Jian Pu ◽  
Xi Zhao ◽  
Qing Ji ◽  
Meng Qu ◽  
...  


Author(s):  
A I Narizhnaya ◽  
A V Chernokulsky ◽  
M G Akperov ◽  
D G Chechin ◽  
I Esau ◽  
...  


2016 ◽  
Vol 12 (12) ◽  
pp. 2241-2253 ◽  
Author(s):  
Louise C. Sime ◽  
Dominic Hodgson ◽  
Thomas J. Bracegirdle ◽  
Claire Allen ◽  
Bianca Perren ◽  
...  

Abstract. Latitudinal shifts in the Southern Ocean westerly wind jet could drive changes in the glacial to interglacial ocean CO2 inventory. However, whilst CMIP5 model results feature consistent future-warming jet shifts, there is considerable disagreement in deglacial-warming jet shifts. We find here that the dependence of pre-industrial (PI) to Last Glacial Maximum (LGM) jet shifts on PI jet position, or state dependency, explains less of the shifts in jet simulated by the models for the LGM compared with future-warming scenarios. State dependence is also weaker for intensity changes, compared to latitudinal shifts in the jet. Winter sea ice was considerably more extensive during the LGM. Changes in surface heat fluxes, due to this sea ice change, probably had a large impact on the jet. Models that both simulate realistically large expansions in sea ice and feature PI jets which are south of 50° S show an increase in wind speed around 55° S and can show a poleward shift in the jet between the PI and the LGM. However, models with the PI jet positioned equatorwards of around 47° S do not show this response: the sea ice edge is too far from the jet for it to respond. In models with accurately positioned PI jets, a +1° difference in the latitude of the sea ice edge tends to be associated with a −0.85° shift in the 850 hPa jet. However, it seems that around 5° of expansion of LGM sea ice is necessary to hold the jet in its PI position. Since the Gersonde et al. (2005) data support an expansion of more than 5°, this result suggests that a slight poleward shift and intensification was the most likely jet change between the PI and the LGM. Without the effect of sea ice, models simulate poleward-shifted westerlies in warming climates and equatorward-shifted westerlies in colder climates. However, the feedback of sea ice counters and reverses the equatorward trend in cooler climates so that the LGM winds were more likely to have also been shifted slightly poleward.



2015 ◽  
Vol 56 (69) ◽  
pp. 45-52 ◽  
Author(s):  
Xi Zhao ◽  
Haoyue Su ◽  
Alfred Stein ◽  
Xiaoping Pang

AbstractThe performance of passive microwave sea-ice concentration products in the marginal ice zone and at the ice edge draws much attention in accuracy assessments. In this study, we generated 917 pseudo-ship observations from four Moderate Resolution Imaging Spectroradiometer (MODIS) images based on the Antarctic Sea Ice Processes and Climate (ASPeCt) protocol to assess the quality of the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) ARTIST (Arctic Radiation and Turbulence Interaction STudy) Sea Ice (ASI) concentrations at the ice edge in Antarctica. The results indicate that the ASI pixels in the pseudo-ASPeCt observations have a mean ice concentration of 13% and are significantly different from the well-established 15% threshold. The average distance between the pseudo-ice edge and the 15% threshold contour is ~10 km. The correlation between the sea-ice concentration (SIC), SICASI and SICMODIS values at the ice edge was considerably lower than the high coefficients obtained from a transect analysis. Underestimation of SICASI occurred in summer, whereas no clear bias was observed in winter. The proposed method provides an opportunity to generate a new source of reference data in which the spatial coverage is wider and more flexible than in traditional in situ observations.



2020 ◽  
Author(s):  
Anna J. Pienkowski ◽  
Katrine Husum ◽  
Simon Belt ◽  
Lukas Smik

<p>An understanding of modern sea-ice proxy distributions relative to measured environmental parameters underpins accurate palaeo reconstructions necessary for correct future projections. We here present new data on highly-branched isoprenoid (HBI) lipid biomarkers produced by sea-ice diatoms (IP<sub>25</sub>, IPSO<sub>25</sub>) and phytoplankton (HBI III, HBI IV) in marine surface sediments taken in a south-north transect east of Svalbard as part of the Nansen Legacy project. Collectively, these biomarkers can be used to reconstruct seasonal spring sea-ice (SpSIC) and the seasonal sea-ice edge. Eight sites at ~78-83°N were sampled by multicorer. All cores contain abundant biomarkers, except the northernmost station. Biomarker-based SpSIC shows a general south-north increase, mimicking observational sea-ice concentration satellite-based means (1988-2017). The HBI T<sub>25</sub> index suggests ice edge phytoplankton blooms at southern stations, agreeing with the general pattern of increased phytoplankton HBIs previously reported from the eastern Barents Sea. As a next step, these new biomarker findings will be used to reconstruct longer-term (Holocene) variability in sea-ice in this region. </p>



2015 ◽  
Vol 9 (4) ◽  
pp. 1735-1745 ◽  
Author(s):  
P. G. Posey ◽  
E. J. Metzger ◽  
A. J. Wallcraft ◽  
D. A. Hebert ◽  
R. A. Allard ◽  
...  

Abstract. This study presents the improvement in ice edge error within the US Navy's operational sea ice forecast systems gained by assimilating high horizontal resolution satellite-derived ice concentration products. Since the late 1980's, the ice forecast systems have assimilated near real-time sea ice concentration derived from the Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave/Imager (SSMI and then SSMIS). The resolution of the satellite-derived product was approximately the same as the previous operational ice forecast system (25 km). As the sea ice forecast model resolution increased over time, the need for higher horizontal resolution observational data grew. In 2013, a new Navy sea ice forecast system (Arctic Cap Nowcast/Forecast System – ACNFS) went into operations with a horizontal resolution of ~ 3.5 km at the North Pole. A method of blending ice concentration observations from the Advanced Microwave Scanning Radiometer (AMSR2) along with a sea ice mask produced by the National Ice Center (NIC) has been developed, resulting in an ice concentration product with very high spatial resolution. In this study, ACNFS was initialized with this newly developed high resolution blended ice concentration product. The daily ice edge locations from model hindcast simulations were compared against independent observed ice edge locations. ACNFS initialized using the high resolution blended ice concentration data product decreased predicted ice edge location error compared to the operational system that only assimilated SSMIS data. A second evaluation assimilating the new blended sea ice concentration product into the pre-operational Navy Global Ocean Forecast System 3.1 also showed a substantial improvement in ice edge location over a system using the SSMIS sea ice concentration product alone. This paper describes the technique used to create the blended sea ice concentration product and the significant improvements in ice edge forecasting in both of the Navy's sea ice forecasting systems.



2008 ◽  
Vol 2 (4) ◽  
pp. 623-647 ◽  
Author(s):  
B. Ozsoy-Cicek ◽  
H. Xie ◽  
S. F. Ackley ◽  
K. Ye

Abstract. Antarctic sea ice cover has shown a slight increase in overall observed ice extent as derived from satellite mapping from 1979 to 2008, contrary to the decline observed in the Arctic regions. Spatial and temporal variations of the Antarctic sea ice however remain a significant problem to monitor and understand, primarily due to the vastness and remoteness of the region. While satellite remote sensing has provided and has great future potential to monitor the variations and changes of sea ice, uncertainties remain unresolved. In this study, the National Ice Center (NIC) ice edge and the AMSR-E (Advanced Microwave Scanning Radiometer – Earth Observing System) ice extent are examined, while the ASPeCt (Antarctic Sea Ice Process and Climate) ship observations from the Oden expedition in December 2006 are used as ground truth to verify the two products during Antarctic summer. While there is a general linear trend between ASPeCt and AMSR-E ice concentration estimates, there is poor correlation (R2=0.41) and AMSR-E tends to underestimate the low ice concentrations. We also found that the NIC sea ice edge agrees well with ship observations, while the AMSR-E shows the ice edge further south, consistent with its poorer detection of low ice concentrations. The northward extent of the ice edge at the time of observation (NIC) had mean values varying from 38 km to 102 km greater on different days for the area as compared with the AMSR-E sea ice extent. For the circumpolar area as a whole in the December period examined, AMSR-E therefore underestimates the area inside the ice edge at this time by up to 14% or, 1.5 million km2 less area, compared to the NIC ice charts. These differences alone can account for more than half of the purported sea ice loss between the pre 1960s and the satellite era suggested earlier from comparative analysis of whale catch data with satellite derived data. Preliminary comparison of satellite scatterometer data suggests better resolution of low concentrations than passive microwave, and therefore better fidelity with ship observations and NIC charts of the area inside the ice edge during Antarctic summer.



2014 ◽  
Vol 8 (3) ◽  
pp. 2277-2329 ◽  
Author(s):  
K. R. Barnhart ◽  
I. Overeem ◽  
R. S. Anderson

Abstract. Shorefast sea ice prevents the interaction of the land and the ocean in the Arctic winter and influences this interaction in the summer by governing the fetch. In many parts of the Arctic the sea-ice-free season is increasing in duration, and the summertime sea ice extents are decreasing. Sea ice provides a first order control on the vulnerability of Arctic coasts to erosion, inundation, and damage to settlements and infrastructure. We ask how the changing sea ice cover has influenced coastal erosion over the satellite record. First, we present a pan-Arctic analysis of satellite-based sea ice concentration specifically along the Arctic coasts. The median length of the 2012 open water season in comparison to 1979 expanded by between 1.5 and 3-fold by Arctic sea sector which allows for open water during the stormy Arctic fall. Second, we present a case study of Drew Point, Alaska, a site on the Beaufort Sea characterized by ice-rich permafrost and rapid coastal erosion rates where both the duration of the sea ice free season and distance to the sea ice edge, particularly towards the northwest, has increased. At Drew Point, winds from the northwest result in increased water levels at the coast and control the process of submarine notch incision, the rate-limiting step of coastal retreat. When open water conditions exist, the distance to the sea ice edge exerts control on the water level and wave field through its control on fetch. We find that the extreme values of water level set-up have increased, consistent with increasing fetch.



2014 ◽  
Vol 28 (1) ◽  
pp. 342-364 ◽  
Author(s):  
Lukas Papritz ◽  
Stephan Pfahl ◽  
Harald Sodemann ◽  
Heini Wernli

Abstract A climatology of cold air outbreaks (CAOs) in the high latitudes of the South Pacific and an analysis of the dynamical mechanisms leading to their formation are presented. Two major and distinct regions with frequent CAOs from autumn to spring are identified: one in the Ross Sea and another in the Amundsen and Bellingshausen Seas. Using an objective method to attribute CAOs to extratropical cyclones, it is shown that about 80% of the CAOs occur in association with the cyclonic flow induced by the passage of extratropical cyclones. Based on kinematic backward trajectories it is quantified that more than 40% of the air masses leading to CAOs originate from Antarctica and descend substantially, with the Ross Ice Shelf corridor as the major pathway. CAO trajectories descending from Antarctica differ from those originating over sea ice by a much lower specific humidity, stronger diabatic cooling, and much more intense adiabatic warming, while potential vorticity evolves similarly in both categories. In winter, CAOs are the major contributor to the net turbulent heat flux off the sea ice edge and CAO frequency strongly determines its interannual variation. Wintertime variations of the frequency of extratropical cyclones are strongly imprinted on the frequency of CAOs and the net turbulent heat and freshwater fluxes. In particular, much of the precipitation associated with the passage of extratropical cyclones is compensated by intense evaporation in cyclone-induced CAOs. This highlights the dominant role of the extratropical storm track in determining the variability of the buoyancy flux forcing of the Southern Ocean.



Sign in / Sign up

Export Citation Format

Share Document