Key elements to assess proposals for rockfall risk mitigation in the context of a technical and economic feasibility project – the experience of two alpine italian regions

Author(s):  
Claudia Strada ◽  
Davide Bertolo ◽  
Volkmar Mair ◽  
Marco Paganone

<p>The Valle d'Aosta Region and the Autonomous Province of Bolzano territories include the highest mountain areas of Italy, where most of the communication infrastructures or strategic activities are totally or in part partially exposed to the rockfall hazards.  </p><p>For this reason, the two administrations have established an operational cooperation in order to compare their procedures and to define the criteria and best practices to prioritize and project the mitigation the rockfall mitigation measures. The result achieved by the work group have inspired a new incoming version of the Italian technical standard UNI 11211 “Rockfall protective measures”.   </p><p>As a part of the rockfall risk assessment of the designing the mitigation measures, it is necessary to assess the actual effectiveness of the alternative mitigation options which have been identified.  </p><p>The choice whether to mitigate the event intensity or the expected damage, with either structural or non-structural measures, will usually achieve a risk mitigation level, associated to a complimentary residual risk. </p><p>Therefore, the project management has to evaluate the degree of hazard and risk mitigation for any given solution. The acceptability of the residual risk and its possible mitigation through organizational measures are to be evaluated as well. A long-term cost/benefit analysis has to be performed, taking also into account the tolerability over time of the handling costs. </p><p>The first milestone in the decisional process the definition of the acceptable risk level. As a matter of fact, which is the key criterion supporting the decision to undertake cost-effective investments in mitigation works. For that reason, a preliminary analysis of the in-situ geological conditions should be as complete and detailed as possible. Project managers have to be aware that the zero-option has to be taken in to account as well, in the case the risk level would not be acceptable. </p><p>Moreover, it has to be taken into account that the risk evaluation is always site-specific, because the rockfall mitigation projects have to be based on a detailed geological reference model. Local changes in geological, hydrogeological, morphological and structural conditions, vegetation, vulnerability and exposure of the objects at risk may lead to different hazard and risk conditions even at a local scale. Therefore, a risk assessment analysis is consistent to a single project and can’t be directly upscaled to implement, for instance, a municipal land management plan.   </p><p>Another key point in the decision-making process is the expected damage assessment, which has to include not only the direct damages (e.g.: loss of human lives) but also the indirect damages and their economic and social impacts. As a consequence, in assessing the acceptable risk both the probability of direct and indirect damage and the economic and social benefits derived from its acceptance have to be weighted. </p><p>The final result has led to guidelines based on QRA (Quantitative Risk Assessment) method and defining three risk levels: Acceptable, ALARP (As Low As Reasonably Practicable) and Unacceptable, providing to the project managers a rational and objective framework to manage rockfall hazards in Italy. </p>

2018 ◽  
Vol 2 (1) ◽  
pp. 20
Author(s):  
Elya Maula Imro’atul Khasanah ◽  
Erwin Dyah Nawawinetu

Background: Forklift is one of the most used craning plane in the manufacture and logistics industry. The operational of forklift can cause fatality work accident. PT SIGK uses forklift in the daily production activities, so it is necessary to identify hazard and risk assessment. Purpose: This study was to identify and assess the risk of physical and mechanical hazard at every stage of forklift operation. Methods: The type of this research was descriptive observational research, the object of the study were potential hazard and risk of all forklift operation stages in the AAC production area, consisted of 4 stages which were initial inspections stage, operational preparation stage, operational stage and post operations stage. Results: The result showed that there were 25 hazards, which were 4 hazards at the initial inspections stage, 2 hazards at the operational preparations stage, 14 hazards at the operational stage and 5 hazards at the post operations stage. Initial risk assessment obtained 2 hazards with high risk level, 22 hazards with medium risk level and 1 hazard with low risk level. The most prevalent hazard controls performed by PT SIGK were administrative (SOP, for klift training, safety sign) and PPE (helmet, gloves, mask), the controls got the value of effectiveness between 50% to 75%. Residual risk assessment, obtained 5 hazards with medium risk level and 20 hazards with low risk level. Conclusion: Additional control should be done by the company to reduce the residual risk level of medium category to be low, if the control recommendation is implemented well then the overall level of residual risk with low category will be obtained.


Author(s):  
Andrés Abarca ◽  
Ricardo Monteiro

In recent years, the use of large scale seismic risk assessment has become increasingly popular to evaluate the fragility of a specific region to an earthquake event, through the convolution of hazard, exposure and vulnerability. These studies tend to focus on the building stock of the region and sometimes neglect the evaluation of the infrastructure, which has great importance when determining the ability of a social group to attend to a disaster and to eventually resume normal activities. This study, developed within the scope of the EU-funded project ITERATE (Improved Tools for Disaster Risk Mitigation in Algeria), focuses on the proposal of an exposure model for bridge structures in Northern Algeria. The proposed model was developed using existing national data surveys, as well as satellite information and field observations. As a result, the location and detailed characterization of a significant share of the Algeria roadway bridge inventory was developed, as well as the definition of a taxonomy that is able to classify the most common structural systems used in Algerian bridge construction. The outcome of this study serves as input to estimate the fragility of the bridge infrastructure inventory and, furthermore, to the overall risk assessment of the Northern Algerian region. Such fragility model will, in turn, enable the evaluation of earthquake scenarios at a regional scale and provide valuable information to decision makers for the implementation of risk mitigation measures.


2019 ◽  
Vol 4 (1) ◽  
pp. 27-37
Author(s):  
Shreya Pradhan ◽  
Ajay K. Shah

The study is primarily focused on credit risk assessment practices in commercial banks on the basis of their internal efficiency, assessment of assets and borrower. The model of the study is based on the analysis of relationship between credit risk management practices, credit risk mitigation measures and obstacles and loan repayment. Based on a descriptive research approach the study has used survey-based primary data and performed a correlation analysis on them. It discovered that credit risk management practices and credit risk mitigation measures have a positive relationship with loan repayment, while obstacles faced by borrowers have no significant relationship with loan repayment. The study findings can provide good insights to commercial bank managers in analysing their model of credit risk management system, policies and practices, and in establishing a profitable and sustainable model for credit risk assessment, by setting a risk tolerance level and managing credit risks vis-a-vis the prevailing market competition.


2011 ◽  
Vol 51 (2) ◽  
pp. 737
Author(s):  
Danny Norton ◽  
Dale Wright

Oil and gas facility managers are well aware that attention to detail saves lives and supports business continuity and reputation. Those tasked with stewardship of electrical assets will be aware of the need to protect their employees from the hazard of electrical arc flash and that it should be at the forefront of safety thinking. Complacency and lack of duty of care with this real and possibly un-quantified hazard can lead to fatalities. The primary solution to arc flash consequences in older installations has been the implementation of safe work procedures and personal protective equipment. While still valid, these solutions are the least effective options in the hierarchy of controls. SKM have developed a practical risk mitigation strategy that considers the hazards of prospective arc flash energy together with the cumulative effect of switchboard age, design, capability and condition. The strategy also considers the range of potential mitigation controls available through the mechanism of substitution and engineering design that focuses on reducing: The likelihood of an arc flash incident occurring; The likelihood of personnel exposure; and, The energy released should an incident occur. A structured arc flash risk assessment process can provide the asset owner the opportunity to rank individual switchboards for likelihood, consequence and risk, and thus provide direction for engineered remediation and capital expenditure. SKM proposes the way in which arc flash risk can be assessed, how appropriate layered mitigation measures might be selected, and how an asset owner may approach the issue of arc flash hazard mitigation to economically and reliably protect its employees.


2019 ◽  
Vol 67 ◽  
pp. 01001
Author(s):  
Natalia Chebanova ◽  
Victoria Orlova ◽  
Liliy Revutska ◽  
M. Karpushenko

In the modern environment, the company constantly faces various types of risks in its business activities. Therefore, the problem of identifying and measuring risks is extremely relevant. The article proposes a scheme for managing financial risks, which includes identifying risk factors, determining the permissible risk level, analyzing individual transactions, developing risk mitigation measures. The article proposes to create the following funds, reserves and collateral: a bad debts reserve, provision for warranty service of clients, provision for social orientation, provision for restructuring, provision for burdensome contracts, fiscal (tax) reserves, commercial, industrial, informational risk reserves, future costs and payments reserve, legal provisions, provisions for impairment of assets, reserve fund. Risks should be taken only if the level of return on risky operations exceeds the level of risk. The issue of the choice of certain reserves, funds and provisions is regulated by the accounting policy of the enterprise, where their types and the order of their creation should be clearly defined. Such measures allow planning contingency expenses and informing users of financial statements of future risk events.


2012 ◽  
Vol 29 (11) ◽  
pp. 1689-1703 ◽  
Author(s):  
Mario Brito ◽  
Gwyn Griffiths ◽  
James Ferguson ◽  
David Hopkin ◽  
Richard Mills ◽  
...  

Abstract The deployment of a deep-diving long-range autonomous underwater vehicle (AUV) is a complex operation that requires the use of a risk-informed decision-making process. Operational risk assessment is heavily dependent on expert subjective judgment. Expert judgments can be elicited either mathematically or behaviorally. During mathematical elicitation experts are kept separate and provide their assessment individually. These are then mathematically combined to create a judgment that represents the group view. The limitation with this approach is that experts do not have the opportunity to discuss different views and thus remove bias from their assessment. In this paper, a Bayesian behavioral approach to estimate and manage AUV operational risk is proposed. At an initial workshop, behavioral aggregation, that is, reaching agreement on the distributions of risks for faults or incidents, is followed by an agreed upon initial estimate of the likelihood of success of the proposed risk mitigation methods. Postexpedition, a second workshop assesses the new data and compares observed to predicted risk, thus updating the prior estimate using Bayes’ rule. This feedback further educates the experts and assesses the actual effectiveness of the mitigation measures. Applying this approach to an AUV campaign in ice-covered waters in the Arctic showed that the maximum error between the predicted and the actual risk was 9% and that the experts’ assessments of the effectiveness of risk mitigation led to a maximum of 24% in risk reduction.


2021 ◽  
Author(s):  
Zlatko Zafirovski ◽  
Vasko Gacevski ◽  
Zoran Krakutovski ◽  
Slobodan Ognjenovic ◽  
Ivona Nedevska

The intense demand and construction of tunnels is accompanied by uncertainties. The reason for appearance of uncertainties are the complex solutions and conditions for these structures. Location and dimensions are becoming more challenging, and the construction is predicted in complexed geological conditions, leading to application of new approaches, methodologies and technologies by the engineers. Most of the uncertainties and unwanted events in tunnelling occur in the construction phase, which generally leads to economic consequences and time losses. For easier handling of the uncertainties, they should be anticipated and studied within a separate part of each project. One of the newer approaches to dealing with uncertainties is hazard and risk assessment and defining ways to deal with them i.e. management. Hazards and risks can be analysed qualitatively and quantitatively. The quantitative analysis, examines the causes and consequences in more detail way and gives explanation of the dependencies. With the quantitative approach, a more valuable information for decision-making can be provided. There are various models and methods used for the quantification of hazards and risks. This paper presents a methodology in which the fault tree analysis and event tree analysis are used in combination to obtain quantitative results. The fault tree analysis is used for assessment of various hazards and the different ways and reasons that cause them. The event tree analysis is a method for assessing the possible scenarios, which follow after a certain hazard i.e. the consequences that may occur in the project. These trees represent graphic models combined with a mathematical (probabilistic) model, which give the probability of occurrence of the risks.


2005 ◽  
Vol 5 (3) ◽  
pp. 357-366 ◽  
Author(s):  
Th. Plattner

Abstract. In recent years, the dealing with natural hazards in Switzerland has shifted away from being hazard-oriented towards a risk-based approach. Decreasing societal acceptance of risk, accompanied by increasing marginal costs of protective measures and decreasing financial resources cause an optimization problem. Therefore, the new focus lies on the mitigation of the hazard's risk in accordance with economical, ecological and social considerations. This modern proceeding requires an approach in which not only technological, engineering or scientific aspects of the definition of the hazard or the computation of the risk are considered, but also the public concerns about the acceptance of these risks. These aspects of a modern risk approach enable a comprehensive assessment of the (risk) situation and, thus, sound risk management decisions. In Switzerland, however, the competent authorities suffer from a lack of decision criteria, as they don't know what risk level the public is willing to accept. Consequently, there exists a need for the authorities to know what the society thinks about risks. A formalized model that allows at least a crude simulation of the public risk evaluation could therefore be a useful tool to support effective and efficient risk mitigation measures. This paper presents a conceptual approach of such an evaluation model using perception affecting factors PAF, evaluation criteria EC and several factors without any immediate relation to the risk itself, but to the evaluating person. Finally, the decision about the acceptance Acc of a certain risk i is made by a comparison of the perceived risk Ri,perc with the acceptable risk Ri,acc.


2020 ◽  
Author(s):  
Joy Ommer ◽  
Saša Vranić ◽  
Laura S. Leo ◽  
Milan Kalas ◽  
Sisay E. Debele ◽  
...  

<p>During the past decades, risk assessment experienced increasing interest in social science but also natural science and other disciplines. At the same time, risk reduction and mitigation gained in interest from local to global level due to the shift from reactive to proactive management. Hazard and risk assessment have been approached on different levels, nonetheless, they are lacking elements such as cross-border assessment or the integration of an ecological risk assessment. One of the objectives of the H2020 Operandum project is to provide an automated science-based assessment of risk for the social-ecological system and further of the applicability and performance of Nature-based Solutions (NBS) for risk mitigation of hydro-meteorological hazards.</p><p>Within this project, an interactive webGIS analytical engine and an NBS catalogue are being developed as part of the Geospatial Information Knowledge Platform (GeoIKP). The analytical engine will encompass open Europe-wide hazard maps and link them with local high-resolution information from public and innovative data sources (e.g. Facebook). These two geo-tools are combined into a recommendation engine - NBS toolkit - trained on existing NBS. Using a holistic approach, the NBS toolkit aims at providing risk assessment and advanced recommendations on NBS usage for mitigation. For this approach, the NBS toolkit incorporates hazard and risk assessment in space and time, cost-benefit analysis, and additionally main drivers and constraints for NBS implementations as well as their geographical transferability, replicability and performance/effectiveness. </p><p>This contribution will offer an insight into the concept and development of the NBS toolkit. Primarily, it will focus on the added value of the NBS toolkit for future nature-based implementation, risk mitigation management and decision-making at all levels. Challenges and current limitations of real-time risk assessment will also be discussed, with a focus on their implications on NBS monitoring and effectiveness.</p>


Sign in / Sign up

Export Citation Format

Share Document