Space weather at Mercury as observed by the THEMIS telescope from Earth

Author(s):  
Melinda Dósa ◽  
Valeria Mangano ◽  
Anna Milillo ◽  
Stefano Massetti ◽  
Zsofia Bebesi ◽  
...  

<p>The dynamic changes of Mercury’s Na exosphere are investigated here, in relation to space weather conditions. Sodium plays a special role in Mercury’s exosphere: due to its strong resonance D lines at 5890-95Å it has been observed and monitored by Earth-based telescopes for decades. Different and highly variable patterns of Na-emission have been identified. In addition to the release processes already studied extensively in the past, we aim here to investigate the following factors more in detail: the distance to the Sun, position in relation to the ecliptic plane and solar wind magnetic field strength and direction. In order to better investigate the relationship of these factors, we have studied the intensity of Na-emission as a function of solar wind dynamic pressure and TAA of Mercury by means of the extended dataset images collected from 2009 to 2013 by Earth-based observations performed at the THEMIS solar telescope. Solar wind velocity and density values are propagated with the magnetic lasso method to the position of Mercury from nearby space probes and compared with Na emission intensity. Data of either ACE or one of the two STEREO spacecraft were used, depending on which spacecraft had a smaller angular distance to Mercury. Single cases are studied qualitatively, and a longer-term quantitative comparison is shown, including further parameters (solar wind magnetic field strength and direction, TAA).</p>

2021 ◽  
Author(s):  
Jacobo Varela Rodriguez ◽  
Sacha A. Brun ◽  
Antoine Strugarek ◽  
Victor Réville ◽  
Filippo Pantellini ◽  
...  

<p><span>The aim of the study is to analyze the response of the Earth magnetosphere for various space weather conditions and model the effect of interplanetary coronal mass ejections. The magnetopause stand off distance, open-closed field lines boundary and plasma flows towards the planet surface are investigated. We use the MHD code PLUTO in spherical coordinates to perform a parametric study regarding the dynamic pressure and temperature of the solar wind as well as the interplanetary magnetic field intensity and orientation. The range of the parameters analyzed extends from regular to extreme space weather conditions consistent with coronal mass ejections at the Earth orbit. The direct precipitation of the solar wind on the Earth day side at equatorial latitudes is extremely unlikely even during super coronal mass ejections. For example, the SW precipitation towards the Earth surface for a IMF purely oriented in the Southward direction requires a IMF intensity around 1000 nT and the SW dynamic pressure above 350 nPa, space weather conditions well above super-ICMEs. The analysis is extended to previous stages of the solar evolution considering the rotation tracks from Carolan (2019). The simulations performed indicate an efficient shielding of the Earth surface 1100 Myr after the Sun enters in the main sequence. On the other hand, for early evolution phases along the Sun main sequence once the Sun rotation rate was at least 5 times faster (< 440 Myr), the Earth surface was directly exposed to the solar wind during coronal mass ejections (assuming today´s Earth magnetic field). Regarding the satellites orbiting the Earth, Southward and Ecliptic IMF orientations are particularly adverse for Geosynchronous satellites, partially exposed to the SW if the SW dynamic pressure is 8-14 nPa and the IMF intensity 10 nT. On the other hand, Medium orbit satellites at 20000 km are directly exposed to the SW during Common ICME if the IMF orientation is Southward and during Strong ICME if the IMF orientation is Earth-Sun or Ecliptic. The same way, Medium orbit satellites at 10000 km are directly exposed to the SW if a Super ICME with Southward IMF orientation impacts the Earth.</span></p><p>This work was supported by the project 2019-T1/AMB-13648 founded by the Comunidad de Madrid, grants ERC WholeSun, Exoplanets A and PNP. We extend our thanks to CNES for Solar Orbiter, PLATO and Meteo Space science support and to INSU/PNST for their financial support.</p>


2004 ◽  
Vol 22 (12) ◽  
pp. 4143-4151 ◽  
Author(s):  
D. G. Sibeck ◽  
K. Kudela ◽  
T. Mukai ◽  
Z. Nemecek ◽  
J. Safrankova

Abstract. We present a case study of Geotail, Interball-1, IMP-8, and Wind observations of density and magnetic field strength cavities excavated by the enhanced pressures associated with bursts of energetic ions in the foreshock. Consistent with theoretical predictions, the pressure of the energetic ions diminishes rapidly with upstream distance due to a decrease in the flux of energetic ions and a transition from near-isotropic to streaming pitch angle distributions. Consequently, the cavities can only be observed immediately upstream from the bow shock. A comparison of conditions upstream from the pre- and post-noon bow shock demonstrates that foreshock cavities introduce perturbations into the oncoming solar wind flow with dimensions smaller than those of the magnetosphere. Dayside geosynchronous magnetic field strength variations observed by GOES-8 do not track the density variations seen by any of the spacecraft upstream from the bow shock in a one-to-one manner, indicating that none of these spacecraft observed the precise sequence of density variations that actually struck the subsolar magnetopause. Key words. Interplanetary physics (energetic particles; planetary bow shocks) – Magnetospheric physics (solar wind-magnetosphere interactions)


2019 ◽  
Vol 85 (1) ◽  
Author(s):  
C. B. Smiet ◽  
H. J. de Blank ◽  
T. A. de Jong ◽  
D. N. L. Kok ◽  
D. Bouwmeester

We study the resistive evolution of a localized self-organizing magnetohydrodynamic equilibrium. In this configuration the magnetic forces are balanced by a pressure force caused by a toroidal depression in the pressure. Equilibrium is attained when this low-pressure region prevents further expansion into the higher-pressure external plasma. We find that, for the parameters investigated, the resistive evolution of the structures follows a universal pattern when rescaled to resistive time. The finite resistivity causes both a decrease in the magnetic field strength and a finite slip of the plasma fluid against the static equilibrium. This slip is caused by a Pfirsch–Schlüter-type diffusion, similar to what is seen in tokamak equilibria. The net effect is that the configuration remains in magnetostatic equilibrium whilst it slowly grows in size. The rotational transform of the structure becomes nearly constant throughout the entire structure, and decreases according to a power law. In simulations this equilibrium is observed when highly tangled field lines relax in a high-pressure (relative to the magnetic field strength) environment, a situation that occurs when the twisted field of a coronal loop is ejected into the interplanetary solar wind. In this paper we relate this localized magnetohydrodynamic equilibrium to magnetic clouds in the solar wind.


2020 ◽  
Author(s):  
Tomas Karlsson ◽  
Lina Hadid ◽  
Michiko Morooka ◽  
Jan-Erik Wahlund

<p>We present the first Cassini observations of magnetic holes on the near-Saturn solar wind and magnetosheath, based on data from the MAG magnetometer. We conclude that magnetic holes (defined as isolated decreases of at least 50% compared to the background magnetic field strength) are common in both regions. We present statistical properties of the magnetic holes, including scale size, depth of the magnetic field reduction, orientation, change in magnetic field direction over the holes, and solar cycle dependence. For magnetosheath magnetic holes, also high-time resolution density measurements from the LP Langmuir probe are available, allowing us to study the anti-correlation of density and magnetic field strength in the magnetic holes. We compare to recent results from MESSENGER observations from Mercury orbit, and finally discuss the possible importance of magnetic holes in solar wind-magnetosphere interaction at Saturn.</p>


2011 ◽  
Vol 29 (9) ◽  
pp. 1549-1569 ◽  
Author(s):  
M. Volwerk ◽  
J. Berchem ◽  
Y. V. Bogdanova ◽  
O. D. Constantinescu ◽  
M. W. Dunlop ◽  
...  

Abstract. A study of the interaction of solar wind magnetic field rotations with the Earth's magnetosphere is performed. For this event there is, for the first time, a full coverage over the dayside magnetosphere with multiple (multi)spacecraft missions from dawn to dusk, combined with ground magnetometers, radar and an auroral camera, this gives a unique coverage of the response of the Earth's magnetosphere. After a long period of southward IMF Bz and high dynamic pressure of the solar wind, the Earth's magnetosphere is eroded and compressed and reacts quickly to the turning of the magnetic field. We use data from the solar wind monitors ACE and Wind and from magnetospheric missions Cluster, THEMIS, DoubleStar and Geotail to investigate the behaviour of the magnetic rotations as they move through the bow shock and magnetosheath. The response of the magnetosphere is investigated through ground magnetometers and auroral keograms. It is found that the solar wind magnetic field drapes over the magnetopause, while still co-moving with the plasma flow at the flanks. The magnetopause reacts quickly to IMF Bz changes, setting up field aligned currents, poleward moving aurorae and strong ionospheric convection. Timing of the structures between the solar wind, magnetosheath and the ground shows that the advection time of the structures, using the solar wind velocity, correlates well with the timing differences between the spacecraft. The reaction time of the magnetopause and the ionospheric current systems to changes in the magnetosheath Bz seem to be almost immediate, allowing for the advection of the structure measured by the spacecraft closest to the magnetopause.


2021 ◽  
Author(s):  
Stefaan Poedts ◽  
Anwesha Maharana ◽  
Camilla Scolini ◽  
Alexey Isavnin

<p>Previous studies of Coronal Mass Ejections (CMEs) have shown the importance of understanding their geometrical structure and internal magnetic field configuration for improving forecasting at Earth. The precise prediction of the CME shock and the magnetic cloud arrival time, their magnetic field strength and the orientation upon impact at Earth is still challenging and relies on solar wind and CME evolution models and precise input parameters. In order to understand the propagation of CMEs in the interplanetary medium, we need to understand their interaction with the complex features in the magnetized background solar wind which deforms, deflects and erodes the CMEs and determines their geo-effectiveness. Hence, it is important to model the internal magnetic flux-rope structure in the CMEs as they interact with CIRs/SIRs, other CMEs and solar transients in the heliosphere. The spheromak model (Verbeke et al. 2019) in the heliospheric wind and CME evolution simulation EUHFORIA (Pomoell and Poedts, 2018), fits well with the data near the CME nose close to its axis but fails to predict the magnetic field in CME legs when these impact Earth (Scolini et al. 2019). Therefore, we implemented the FRi3D stretched flux-rope CME model (Isavnin, 2016) in EUHFORIA to model a more realistic CME geometry. Fri3D captures the three-dimensional magnetic field structure with parameters like skewing, pancaking and flattening that quantify deformations experienced by an interplanetary CME. We perform test runs of real CME events and validate the ability of FRi3D coupled with EUHFORIA in predicting the CME geo-effectiveness. We have modeled two real events with FRi3D. First, a CME event on 12 July 2012 which was a head-on encounter at Earth. Second, the flank CME encounter of 14 June 2012 which did not leave any magnetic field signature at Earth when modeled with Spheromak. We compare our results with the results from non-magnetized cone simulations and magnetized simulations employing the spheromak flux-rope model. We further discuss how constraining observational parameters using the stretched flux rope CME geometry in FRi3D affects the prediction of the magnetic field strength in our simulations, highlighting improvements and discussing future perspective.</p><p><em>This research has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 870405 (EUHFORIA 2.0)</em></p>


2018 ◽  
Vol 618 ◽  
pp. A114 ◽  
Author(s):  
F. Plaschke ◽  
T. Karlsson ◽  
C. Götz ◽  
C. Möstl ◽  
I. Richter ◽  
...  

The Rosetta spacecraft of the European Space Agency made ground-breaking observations of comet 67P/Churyumov-Gerasimenko and of its cometary environment. We search for magnetic holes in that environment, i.e., significant depressions in the magnetic field strength, measured by the Rosetta fluxgate Magnetometer (MAG) in April and May 2015. In that time frame of two months, we identified 23 magnetic holes. The cometary activity was intermediate and increasing because Rosetta was on the inbound leg toward the Sun. While in April solar wind protons were still observed by Rosetta near the comet, in May these protons were already mostly replaced by heavy cometary ions. Magnetic holes have frequently been observed in the solar wind. We find, for the first time, that magnetic holes exist in the cometary environment even when solar wind protons are almost absent. Some of the properties of the magnetic holes are comparable to those of solar wind holes; they are associated with density enhancements, sometimes associated with co-located current sheets and fast solar wind streams, and are of similar scales. However, particularly in May, the magnetic holes near the comet appear to be more processed, featuring shifted density enhancements and, sometimes, bipolar signatures in magnetic field strength rather than simple depressions. The magnetic holes are of global size with respect to the coma. However, at the comet, they are compressed owing to magnetic field pile-up and draping so that they change in shape. There, the magnetic holes become of comparable size to heavy cometary ion gyroradii, potentially enabling kinetic interactions.


2020 ◽  
Author(s):  
Lucile Turc ◽  
Vertti Tarvus ◽  
Andrew Dimmock ◽  
Markus Battarbee ◽  
Urs Ganse ◽  
...  

<p>The magnetosheath is the region bounded by the bow shock and the magnetopause which is home to shocked solar wind plasma. At the interface between the solar wind and the magnetosphere, the magnetosheath plays a key role in the coupling between these two media. Previous works have revealed pronounced dawn-dusk asymmetries in the magnetosheath properties, with for example the magnetic field strength and flow velocity being larger on the dusk side, while the plasma is denser, hotter and more turbulent on the dawn side. The dependence of these asymmetries on the upstream parameters remains however largely unknown. One of the main sources of these asymmetries is the bow shock configuration, which is typically quasi-parallel on the dawn side and quasi-perpendicular on the dusk side of the terrestrial magnetosheath because of the Parker-spiral orientation of the interplanetary magnetic field (IMF) at Earth. Most of these previous studies rely on collections of spacecraft measurements associated with a wide range of upstream conditions that have been processed to obtain the average values of the magnetosheath parameters. In this work, we use a different approach and quantify the magnetosheath asymmetries in global hybrid-Vlasov simulations performed with the Vlasiator model. We concentrate on three parameters: the magnetic field strength, the plasma density and the flow velocity. We find that the Vlasiator model reproduces accurately the polarity of the asymmetries, but that their level tends to be higher than in spacecraft measurements, probably due to the different processing methods. We investigate how the asymmetries change when the IMF becomes more radial and when the Alfvén Mach number decreases. When the IMF makes a 30° angle with the Sun-Earth line instead of 45°, we find a stronger magnetic field asymmetry and a larger variability of the magnetosheath density. In contrast, a lower Alfvén Mach number leads to a decrease of the magnetic field asymmetry level and of the variability of the magnetosheath density and velocity, likely due to weaker foreshock processes.</p>


2020 ◽  
Author(s):  
Katerina Stergiopoulou ◽  
Niklas Edberg ◽  
David Andrews ◽  
Beatriz Sánchez-Cano

<p>We investigate the effects of the upstream solar wind magnetic field on the Martian induced magnetosphere. This is a two-spacecraft study, for which we use Mars Express (MEX) magnetic field magnitude data from the Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) instrument and Interplanetary Magnetic Field (IMF) measurements and solar wind density and velocity from the magnetometer (MAG) and the Solar Wind Ion Analyzer (SWIA) on board Mars Atmosphere and Volatile EvolutioN (MAVEN), from November 2014 to November 2018. Equally temporally spaced echoes appear in MARSIS' ionograms from which the electron cyclotron frequency and eventually the magnitude of the local magnetic field can be calculated. At the same time solar wind magnetic field data and solar wind parameters from MAG and SWIA respectively are utilized, providing the solar wind input to the Martian system. We make real time comparisons of the IMF and the induced magnetic field in the environment of Mars and we test the ratio B<sub>(MEX)</sub> /B<sub>(MAVEN)</sub>  against various parameters such as the solar wind dynamic pressure, velocity, density, Mach number as well as the Martian seasons, latitudes and heliocentric distances. Additionally, we search for disturbances in IMF which then can be traced in the induced field ultimately revealing the response time of the induced magnetosphere to the solar wind behaviour. <br />MEX and MAVEN measurements combined allow us to investigate the response of the Martian induced magnetosphere to the solar wind magnetic field. Real time comparisons of the IMF and the induced field could help us understand the mechanisms controlling the structure of the Martian induced magnetosphere. </p>


Sign in / Sign up

Export Citation Format

Share Document