Earth System Music: music generated from the first United Kingdom Earth System model

Author(s):  
Lee de Mora ◽  
Alistair Sellar ◽  
Andrew Yool ◽  
Julien Palmieri ◽  
Robin S. Smith ◽  
...  

<p>With the ever-growing interest from the general public towards understanding climate science, it is becoming increasingly important that we present this information in ways accessible to non-experts. In this pilot study, we use time series data from the first United Kingdom Earth System model (UKESM1) to create six procedurally generated musical pieces and use them to explain the process of modelling the earth system and to engage with the wider community. </p><p>Scientific data is almost always represented graphically either in figures or in videos. By adding audio to the visualisation of model data, the combination of music and imagery provides additional contextual clues to aid in the interpretation. Furthermore, the audiolisation of model data can be employed to generate interesting and captivating music, which can not  only reach a wider audience, but also hold the attention of the listeners for extended periods of time.</p><p>Each of the six pieces presented in this work was themed around either a scientific principle or a practical aspect of earth system modelling. These pieces demonstrate the concepts of a spin up, a pre-industrial control run, multiple historical experiments, and the use of several future climate scenarios to a wider audience. They also show the ocean acidification over the historical period, the changes in circulation, the natural variability of the pre-industrial simulations, and the expected rise in sea surface temperature over the 20th century. </p><p>Each of these pieces were arranged using different musical progression, style and tempo. All six pieces were performed by the digital piano synthesizer, TiMidity++, and were published on the lead author's YouTube channel. The videos all show the progression of the data in time with the music and a brief description of the methodology is posted alongside the video. </p><p>To disseminate these works, links to each piece were published on the lead author's personal and professional social media accounts. The reach of these works was also analysed using YouTube's channel monitoring toolkit for content creators, YouTube studio.</p>

2020 ◽  
Author(s):  
Lee de Mora ◽  
Alistair A. Sellar ◽  
Andrew Yool ◽  
Julien Palmieri ◽  
Robin S. Smith ◽  
...  

Abstract. Scientific data is almost always represented graphically either in figures or in videos. With the ever-growing interest from the general public towards understanding climate science, it is becoming increasingly important that we present this information in ways accessible to non-experts. In this pilot study, we use time series data from the first United Kingdom Earth System model (UKESM1) to create six procedurally generated musical pieces and use them to test whether we can use music to engage with the wider community. Each of these pieces is based around a unique part of UKESM1's ocean component model, either in terms of a scientific principle or a practical aspect of modelling. In addition, each piece is arranged using a different musical progression, style and tempo. These pieces were performed by the digital piano synthesizer, TiMidity++, and were published on the lead author's YouTube channel. The videos all show the time progression of the data in time with the music and a brief description of the methodology is posted below the video. To disseminate these works, a link to each piece was published on the lead authors personal and professional social media accounts. The reach of these works was analysed using YouTube's channel monitoring toolkit for content creators, YouTube studio. In the first ninety days after the first video was published, the six pieces reached at least 251 unique viewers, and have 553 total views. We found that most of the views occurred in the fourteen days immediately after each video was published. In effect, once the concept had been demonstrated to an audience, there was reduced enthusiasm from that audience to return to it immediately. This suggests that to use music effectively as an science outreach tool, the works needs to reach new audiences or new and unique content needs to be delivered to a returning audience.


2020 ◽  
Vol 3 (2) ◽  
pp. 263-278 ◽  
Author(s):  
Lee de Mora ◽  
Alistair A. Sellar ◽  
Andrew Yool ◽  
Julien Palmieri ◽  
Robin S. Smith ◽  
...  

Abstract. Scientific data are almost always represented graphically in figures or in videos. With the ever-growing interest from the general public in understanding climate sciences, it is becoming increasingly important that scientists present this information in ways that are both accessible and engaging to non-experts. In this pilot study, we use time series data from the first United Kingdom Earth System Model (UKESM1) to create six procedurally generated musical pieces. Each of these pieces presents a unique aspect of the ocean component of the UKESM1, either in terms of a scientific principle or a practical aspect of modelling. In addition, each piece is arranged using a different musical progression, style and tempo. These pieces were created in the Musical Instrument Digital Interface (MIDI) format and then performed by a digital piano synthesiser. An associated video showing the time development of the data in time with the music was also created. The music and video were published on the lead author's YouTube channel. A brief description of the methodology was also posted alongside the video. We also discuss the limitations of this pilot study and describe several approaches to extend and expand upon this work.


2015 ◽  
Vol 8 (10) ◽  
pp. 8607-8633 ◽  
Author(s):  
A. Kerkweg ◽  
P. Jöckel

Abstract. The coupling of Earth system model components, which work on different grids, into an Earth System Model (ESM) provokes the necessity to transfer data from one grid to another. Additionally, each of these model components might require data import onto its specific grid. Usually, one of two approaches is used: Either all input data is preprocessed to the employed grid, or the imported data is interpolated on-line, i.e. during model integration to the required grid. For the former, each change in the model resolution requires the re-preprocessing of all data. The latter option implies that in each model integration computing time is required for the grid mapping. If all components of an ESM use only one single point of import and the same mapping software, only one software package needs to be changed for code optimisation, inclusion of additional interpolation methods or the implementation of new data formats. As the Modular Earth Submodel System (MESSy) is mainly used for research purposes which require frequent changes of the model setup including the model resolution or the application of different sets of input data (e.g., different emission scenarios), the idea of a common procedure for data import was implemented in MESSy in form of the infrastructure submodel IMPORT. Currently, IMPORT consists of two submodels: IMPORT_TS for reading and processing abstract time series data and IMPORT_GRID, utilising the infrastructure submodel GRID which provides procedures for grid transformations using the remapping software packages NREGRID (Jöckel, 2006) and SCRIP (Jones, 1999). Grid information is stored in a standardised structure as geo-hybrid grids. Based on this unified definition a standardised interface for the grid transformations is provided, thus simplifying the implemention of grid transformations in the model code. This article describes the main functionalities of the two MESSy infrastructure submodels GRID and IMPORT. The Supplement of this article contains stand-alone tools of both IMPORT subsubmodels, IMPORT_TS and IMPORT_GRID. Their handling is explained in detail in the IMPORT User Manual which is also part of the Supplement.


2021 ◽  
Author(s):  
Ralf Döscher ◽  
Mario Acosta ◽  
Andrea Alessandri ◽  
Peter Anthoni ◽  
Almut Arneth ◽  
...  

Abstract. The Earth System Model EC-Earth3 for contributions to CMIP6 is documented here, with its flexible coupling framework, major model configurations, a methodology for ensuring the simulations are comparable across different HPC systems, and with the physical performance of base configurations over the historical period. The variety of possible configurations and sub-models reflects the broad interests in the EC-Earth community. EC-Earth3 key performance metrics demonstrate physical behaviour and biases well within the frame known from recent CMIP models. With improved physical and dynamic features, new ESM components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond.


2017 ◽  
Vol 10 (1) ◽  
pp. 271-319 ◽  
Author(s):  
Thomas Gasser ◽  
Philippe Ciais ◽  
Olivier Boucher ◽  
Yann Quilcaille ◽  
Maxime Tortora ◽  
...  

Abstract. This paper provides a comprehensive description of OSCAR v2.2, a simple Earth system model. The general philosophy of development is first explained, followed by a complete description of the model's drivers and various modules. All components of the Earth system necessary to simulate future climate change are represented in the model: the oceanic and terrestrial carbon cycles – including a book-keeping module to endogenously estimate land-use change emissions – so as to simulate the change in atmospheric carbon dioxide; the tropospheric chemistry and the natural wetlands, to simulate that of methane; the stratospheric chemistry, for nitrous oxide; 37 halogenated compounds; changing tropospheric and stratospheric ozone; the direct and indirect effects of aerosols; changes in surface albedo caused by black carbon deposition on snow and land-cover change; and the global and regional response of climate – in terms of temperature and precipitation – to all these climate forcers. Following the probabilistic framework of the model, an ensemble of simulations is made over the historical period (1750–2010). We show that the model performs well in reproducing observed past changes in the Earth system such as increased atmospheric concentration of greenhouse gases or increased global mean surface temperature.


2019 ◽  
Vol 12 (11) ◽  
pp. 4823-4873 ◽  
Author(s):  
Neil C. Swart ◽  
Jason N. S. Cole ◽  
Viatcheslav V. Kharin ◽  
Mike Lazare ◽  
John F. Scinocca ◽  
...  

Abstract. The Canadian Earth System Model version 5 (CanESM5) is a global model developed to simulate historical climate change and variability, to make centennial-scale projections of future climate, and to produce initialized seasonal and decadal predictions. This paper describes the model components and their coupling, as well as various aspects of model development, including tuning, optimization, and a reproducibility strategy. We also document the stability of the model using a long control simulation, quantify the model's ability to reproduce large-scale features of the historical climate, and evaluate the response of the model to external forcing. CanESM5 is comprised of three-dimensional atmosphere (T63 spectral resolution equivalent roughly to 2.8∘) and ocean (nominally 1∘) general circulation models, a sea-ice model, a land surface scheme, and explicit land and ocean carbon cycle models. The model features relatively coarse resolution and high throughput, which facilitates the production of large ensembles. CanESM5 has a notably higher equilibrium climate sensitivity (5.6 K) than its predecessor, CanESM2 (3.7 K), which we briefly discuss, along with simulated changes over the historical period. CanESM5 simulations contribute to the Coupled Model Intercomparison Project phase 6 (CMIP6) and will be employed for climate science and service applications in Canada.


2016 ◽  
Author(s):  
Thomas Gasser ◽  
Philippe Ciais ◽  
Olivier Boucher ◽  
Yann Quilcaille ◽  
Maxime Tortora ◽  
...  

Abstract. This paper provides a comprehensive description of OSCAR v2.2, a simple Earth system model. The general philosophy of development is first explained, it is then followed by a complete description of the model's drivers and various modules. All components of the Earth system necessary to simulate future climate change are represented in the model: the oceanic and terrestrial carbon-cycles – including a book-keeping module to endogenously estimate land-use change emissions – so as to simulate the change in atmospheric carbon dioxide; the tropospheric OH chemistry and the natural wetlands, to simulate that of methane; the stratospheric chemistry, for nitrous oxide; thirty-seven halogenated compounds; changing tropospheric and stratospheric ozone; the direct and indirect effects of aerosols; changes in surface albedo caused by black carbon deposition on snow and land-cover change; and the global and regional response of climate – in terms of temperatures and precipitations – to all these climate forcers. Following the probabilistic framework of the model, an ensemble of simulations is made over the historical period (1750–2010). We show that the model performs well in reproducing observed past changes in the Earth system such as increased atmospheric concentration of greenhouse gases or increased global mean surface temperature.


2021 ◽  
Vol 14 (2) ◽  
pp. 875-887
Author(s):  
Zhaoyuan Yu ◽  
Dongshuang Li ◽  
Zhengfang Zhang ◽  
Wen Luo ◽  
Yuan Liu ◽  
...  

Abstract. Lossy compression has been applied to the data compression of large-scale Earth system model data (ESMD) due to its advantages of a high compression ratio. However, few lossy compression methods consider both global and local multidimensional coupling correlations, which could lead to information loss in data approximation of lossy compression. Here, an adaptive lossy compression method, adaptive hierarchical geospatial field data representation (Adaptive-HGFDR), is developed based on the foundation of a stream compression method for geospatial data called blocked hierarchical geospatial field data representation (Blocked-HGFDR). In addition, the original Blocked-HGFDR method is also improved from the following perspectives. Firstly, the original data are divided into a series of data blocks of a more balanced size to reduce the effect of the dimensional unbalance of ESMD. Following this, based on the mathematical relationship between the compression parameter and compression error in Blocked-HGFDR, the control mechanism is developed to determine the optimal compression parameter for the given compression error. By assigning each data block an independent compression parameter, Adaptive-HGFDR can capture the local variation of multidimensional coupling correlations to improve the approximation accuracy. Experiments are carried out based on the Community Earth System Model (CESM) data. The results show that our method has higher compression ratio and more uniform error distributions compared with ZFP and Blocked-HGFDR. For the compression results among 22 climate variables, Adaptive-HGFDR can achieve good compression performances for most flux variables with significant spatiotemporal heterogeneity and fast changing rate. This study provides a new potential method for the lossy compression of the large-scale Earth system model data.


Sign in / Sign up

Export Citation Format

Share Document