The dynamics and impacts of the December 2017 catastrophic mass flow Villa Santa Lucia, Chile

Author(s):  
Holly Chubb ◽  
Andrew Russell ◽  
Alejandro Dussaillant ◽  
Stuart Dunning

<p>Landslides and mass flows are dynamic processes that involve the movement of rock, debris and earth down a slope. As a result of the 2017 catastrophic mass flow, these processes have been further established as a significant risk to the population of Chile, and further afield. Through field site investigations, it is possible to develop a greater insight into the mechanisms and conditions that influence the dynamics of these phenomena.</p><p>On Saturday 16 December 2017, a catastrophic debris flow (aluvión) partially destroyed the village of Villa Santa Lucía and a 5 km long reach of the Panamerican Highway resulting in 22 fatalities. The apparent trigger was an intense rainfall event of 124 mm in 24h associated with an elevated 0˚C isotherm (1600 m.a.s.l.) that led to the failure of 5.5 - 6.8x10<sup>6</sup>m<sup>3 </sup> mountainside in the uppermost catchment of Rio Burritos near the SE end of the Cordón Yelcho Glacier. The landslide transformed rapidly into a highly mobile debris flow as it entrained water from the Rio Burritos river and glacier ice from the Cordón Yelcho.</p><p>This study characterises the geomorphological impacts and dynamics of the 2017 mass flow. Post-event DEMs, aerial photos and satellite imagery provided the basis for geomorphological mapping and terrain analysis. Fieldwork in January 2019 allowed sampling of mass flow deposits, logging of sedimentary sections and dGPS surveys.</p><p>Both erosion and deposition occurred over the Villa Santa Lucía flow path. Erosion occurred more frequently in the first 7.9km of the flow path due to high slope angles and presence of the Rio Burritos that channelised flow. A high proportion of coarse particles in the flow enhanced basal scouring and erosion of the valley sides, resulting in significant flow bulking. A total of 7.6x10<sup>6</sup>m<sup>3</sup> – 7.7x10<sup>6</sup>m<sup>3 </sup> of material was deposited across the latter 6.3km of the flow path.</p><p>Sediment sample analysis showed that the flow began as cohesive and viscous in nature in spite of a lack of clay particles and high proportions of sands and gravels. The addition of water from the Rio Burritos reduced the viscosity of the flow as the flow propagated downstream. This resulted in enhanced lobe spreading and particle interactions in the depositional zone. In spite of this water entrainment, the flow remained both sediment and debris rich over its duration.</p><p>Catastrophic mass flows like the event at Villa Santa Lucía are likely to become more common around the world in the future as intense rainfall events become more frequent due to the dominance of El Nino Southern Oscillation (ENSO) events. By studying recent catastrophic mass flow events, an insight into the relationship between mass flow triggers and flow composition will be developed. This will allow for greater understanding of how these influence mass flow behaviours. As a result, it may then be possible to predict the rheology and routes of future flows. These predictions have the ability to be used to protect communities from such events in the future.</p>

2013 ◽  
Vol 2013 ◽  
pp. 1-17 ◽  
Author(s):  
Robert D. Knapke ◽  
Mark G. Turner

An unsteady analysis of the MIT counterrotating aspirated compressor (CRAC) has been conducted using the Numeca FINE/Turbo 3D viscous turbulent flow solver with the Nonlinear Harmonic (NLH) method. All three blade rows plus the aspiration slot and plenum were included in the computational domain. Both adiabatic and isothermal solid wall boundary conditions were applied and simulations with and without aspiration were completed. The aspirated isothermal boundary condition solutions provide the most accurate representation of the trends produced by the experiment, particularly at the endwalls. These simulations provide significant insight into the flow physics of the aspiration flow path. Time histories and spanwise distributions of flow properties in the aspiration slot and plenum present a flow field with significant temporal and spatial variations. In addition, the results provide an understanding of the aspiration flow path choking mechanism that was previously not well understood and is consistent with experimental results. The slot and plenum had been designed to aspirate 1% of the flow path mass flow, whereas the experiment and simulations show that it chokes at about 0.5% mass flow.


2021 ◽  
Author(s):  
◽  
Benjamin John Dixon

<p>The Ngatoro Formation is an extensive volcaniclastic deposit distributed on the eastern lower flanks of Egmont Volcano, central North Island, New Zealand. Formally identified by Neall (1979) this deposit was initially attributed to an Egmont sourced water-supported mass flow event c. 3, 600 ¹⁴C years B.P. The Ngatoro Formation was subsequently described by Alloway (1989) as a single debris flow deposit closely associated with the deposition of the underlying Inglewood Tephra (c. 3,600 ¹⁴C yrs B.P) that had laterally transformed into a hyperconcentrated- to- flood flow deposit. Such water-supported mass flows have been well documented on volcanoes both within New Zealand (i.e. Mt Ruapehu) and elsewhere around the world (i.e. Mt Merapi, Central Java and Mt St Helens, Washington). This thesis comprises field mapping, stratigraphic descriptions, field and laboratory grain size and shape analysis, tephrochronology and palaeomagnetic analysis with the aim of refining the stratigraphy, facies architecture and emplacement history of the c. 3,600 ¹⁴C yrs B.P. Ngatoro Formation.  This study has found that the Ngatoro Formation has a highly variable and complex emplacement history as evidenced by the rapid textural changes with increasing distance from the modern day Egmont summit. The Ngatoro Formation comprises two closely spaced mass flow events whose flow and emplacement characteristics have undergone both proximal to distal and axial to marginal transformations. On surfaces adjacent to the Manganui Valley on the deeply incised flanks of Egmont Volcano, the Ngatoro Formation is identified as overbank surge deposits whereas at the boundary of Egmont National Park it occurs as massive, pebble- to boulder-rich debris flow deposits. At intermediate to distal distances (17-23 km from the modern Egmont summit) the Ngatoro Formation occurs as a sequence of multiple coalescing dominantly sandy textured hyperconcentrated flow deposits. The lateral and longitudinal textural variability in the Ngatoro Formation reflects downstream transformation from gas-supported block-and-ash flows to water-supported debris flows, then subsequently to turbulent pebbly-sand dominated hyperconcentrated flows.  Palaeomagnetic temperature estimates for the Ngatoro Formation at two sites (Vickers and Surrey Road Quarries, c. 10 km from the present day Egmont summit) indicate clast incorporation temperatures of c. 300°C and emplacement temperatures of c. 200°C. The elevated emplacement temperatures supported by the Ngatoro Formation’s coarse textured, monolithologic componentry suggest non-cohesive emplacement of block-and-ash flow debris generated by the sequential gravitational collapse of an effusive lava dome after the paroxysmal Inglewood eruptive event (c. 3,600 ¹⁴C yrs B.P.). The occurrence of a prominent intervening paleosol between these two events suggest that they are not part of the same eruptive phase but rather, the latter is a product of a previously unrecognised extended phase of the Inglewood eruptive event. This study recognises the potential for gravitational dome collapse, the generation of block-and-ash flows and their lateral transformation to water-support mass flows (debris, hyperconcentrated and stream flows) occurring in years to decades following from the main eruptive phase. This insight has implications with respect to the evaluation of post-eruptive hazards and risk.</p>


2021 ◽  
Author(s):  
◽  
Benjamin John Dixon

<p>The Ngatoro Formation is an extensive volcaniclastic deposit distributed on the eastern lower flanks of Egmont Volcano, central North Island, New Zealand. Formally identified by Neall (1979) this deposit was initially attributed to an Egmont sourced water-supported mass flow event c. 3, 600 ¹⁴C years B.P. The Ngatoro Formation was subsequently described by Alloway (1989) as a single debris flow deposit closely associated with the deposition of the underlying Inglewood Tephra (c. 3,600 ¹⁴C yrs B.P) that had laterally transformed into a hyperconcentrated- to- flood flow deposit. Such water-supported mass flows have been well documented on volcanoes both within New Zealand (i.e. Mt Ruapehu) and elsewhere around the world (i.e. Mt Merapi, Central Java and Mt St Helens, Washington). This thesis comprises field mapping, stratigraphic descriptions, field and laboratory grain size and shape analysis, tephrochronology and palaeomagnetic analysis with the aim of refining the stratigraphy, facies architecture and emplacement history of the c. 3,600 ¹⁴C yrs B.P. Ngatoro Formation.  This study has found that the Ngatoro Formation has a highly variable and complex emplacement history as evidenced by the rapid textural changes with increasing distance from the modern day Egmont summit. The Ngatoro Formation comprises two closely spaced mass flow events whose flow and emplacement characteristics have undergone both proximal to distal and axial to marginal transformations. On surfaces adjacent to the Manganui Valley on the deeply incised flanks of Egmont Volcano, the Ngatoro Formation is identified as overbank surge deposits whereas at the boundary of Egmont National Park it occurs as massive, pebble- to boulder-rich debris flow deposits. At intermediate to distal distances (17-23 km from the modern Egmont summit) the Ngatoro Formation occurs as a sequence of multiple coalescing dominantly sandy textured hyperconcentrated flow deposits. The lateral and longitudinal textural variability in the Ngatoro Formation reflects downstream transformation from gas-supported block-and-ash flows to water-supported debris flows, then subsequently to turbulent pebbly-sand dominated hyperconcentrated flows.  Palaeomagnetic temperature estimates for the Ngatoro Formation at two sites (Vickers and Surrey Road Quarries, c. 10 km from the present day Egmont summit) indicate clast incorporation temperatures of c. 300°C and emplacement temperatures of c. 200°C. The elevated emplacement temperatures supported by the Ngatoro Formation’s coarse textured, monolithologic componentry suggest non-cohesive emplacement of block-and-ash flow debris generated by the sequential gravitational collapse of an effusive lava dome after the paroxysmal Inglewood eruptive event (c. 3,600 ¹⁴C yrs B.P.). The occurrence of a prominent intervening paleosol between these two events suggest that they are not part of the same eruptive phase but rather, the latter is a product of a previously unrecognised extended phase of the Inglewood eruptive event. This study recognises the potential for gravitational dome collapse, the generation of block-and-ash flows and their lateral transformation to water-support mass flows (debris, hyperconcentrated and stream flows) occurring in years to decades following from the main eruptive phase. This insight has implications with respect to the evaluation of post-eruptive hazards and risk.</p>


2016 ◽  
Vol 29 (15) ◽  
pp. 5447-5468 ◽  
Author(s):  
Martina Ricko ◽  
Robert F. Adler ◽  
George J. Huffman

Abstract Climatology and variations of recent mean and intense precipitation over a near-global (50°S–50°N) domain on a monthly and annual time scale are analyzed. Data used to derive daily precipitation to examine the effects of spatial and temporal coverage of intense precipitation are from the current Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) 3B42 version 7 precipitation product, with high spatial and temporal resolution during 1998–2013. Intense precipitation is defined by several different parameters, such as a 95th percentile threshold of daily precipitation, a mean precipitation that exceeds that percentile, or a fixed threshold of daily precipitation value (e.g., 25 and 50 mm day−1). All parameters are used to identify the main characteristics of spatial and temporal variation of intense precipitation. High correlations between examined parameters are observed, especially between climatological monthly mean precipitation and intense precipitation, over both tropical land and ocean. Among the various parameters examined, the one best characterizing intense rainfall is a fraction of daily precipitation ≥ 25 mm day−1, defined as a ratio between the intense precipitation above the used threshold and mean precipitation. Regions that experience an increase in mean precipitation likely experience a similar increase in intense precipitation, especially during the El Niño–Southern Oscillation (ENSO) events. Improved knowledge of this intense precipitation regime and its strong connection to mean precipitation given by the fraction parameter can be used for monitoring of intense rainfall and its intensity on a global to regional scale.


Author(s):  
Zoran Vrucinic

The future of medicine belongs to immunology and alergology. I tried to not be too wide in description, but on the other hand to mention the most important concepts of alergology to make access to these diseases more understandable, logical and more useful for our patients, that without complex pathophysiology and mechanism of immune reaction,we gain some basic insight into immunological principles. The name allergy to medicine was introduced by Pirquet in 1906, and is of Greek origin (allos-other + ergon-act; different reaction), essentially representing the reaction of an organism to a substance that has already been in contact with it, and manifested as a specific response thatmanifests as either a heightened reaction, a hypersensitivity, or as a reduced reaction immunity. Synonyms for hypersensitivity are: altered reactivity, reaction, hypersensitivity. The word sensitization comes from the Latin (sensibilitas, atis, f.), which means sensibility,sensitivity, and has retained that meaning in medical vocabulary, while in immunology and allergology this term implies the creation of hypersensitivity to an antigen. Antigen comes from the Greek words, anti-anti + genos-genus, the opposite, anti-substance substance that causes the body to produce antibodies.


2020 ◽  
pp. bmjmilitary-2020-001455 ◽  
Author(s):  
Jonathan Blair Thomas Herron ◽  
K M Heil ◽  
D Reid

In 2015, the UK government published the National Strategic Defence and Security Review (SDSR) 2015, which laid out their vision for the future roles and structure of the UK Armed Forces. SDSR 2015 envisaged making broader use of the Armed Forces to support missions other than warfighting. One element of this would be to increase the scale and scope of defence engagement (DE) activities that the UK conducts overseas. DE activities traditionally involve the use of personnel and assets to help prevent conflict, build stability and gain influence with partner nations as part of a short-term training teams. This paper aimed to give an overview of the Specialist Infantry Group and its role in UK DE. It will explore the reasons why the SDSR 2015 recommended their formation as well as an insight into future tasks.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Hendri Irwandi ◽  
Mohammad Syamsu Rosid ◽  
Terry Mart

AbstractThis research quantitatively and qualitatively analyzes the factors responsible for the water level variations in Lake Toba, North Sumatra Province, Indonesia. According to several studies carried out from 1993 to 2020, changes in the water level were associated with climate variability, climate change, and human activities. Furthermore, these studies stated that reduced rainfall during the rainy season due to the El Niño Southern Oscillation (ENSO) and the continuous increase in the maximum and average temperatures were some of the effects of climate change in the Lake Toba catchment area. Additionally, human interventions such as industrial activities, population growth, and damage to the surrounding environment of the Lake Toba watershed had significant impacts in terms of decreasing the water level. However, these studies were unable to determine the factor that had the most significant effect, although studies on other lakes worldwide have shown these factors are the main causes of fluctuations or decreases in water levels. A simulation study of Lake Toba's water balance showed the possibility of having a water surplus until the mid-twenty-first century. The input discharge was predicted to be greater than the output; therefore, Lake Toba could be optimized without affecting the future water level. However, the climate projections depicted a different situation, with scenarios predicting the possibility of extreme climate anomalies, demonstrating drier climatic conditions in the future. This review concludes that it is necessary to conduct an in-depth, comprehensive, and systematic study to identify the most dominant factor among the three that is causing the decrease in the Lake Toba water level and to describe the future projected water level.


ABI-Technik ◽  
2020 ◽  
Vol 40 (4) ◽  
pp. 357-364
Author(s):  
Martin Lee ◽  
Christina Riesenweber

AbstractThe authors of this article have been managing a large change project at the university library of Freie Universität Berlin since January 2019. At the time of writing this in the summer of 2020, the project is about halfway completed. With this text, we would like to give some insight into our work and the challenges we faced, thereby starting conversations with similar undertakings in the future.


Sign in / Sign up

Export Citation Format

Share Document