scholarly journals Detailed Unsteady Simulation of a Counterrotating Aspirated Compressor with a Focus on the Aspiration Slot and Plenum

2013 ◽  
Vol 2013 ◽  
pp. 1-17 ◽  
Author(s):  
Robert D. Knapke ◽  
Mark G. Turner

An unsteady analysis of the MIT counterrotating aspirated compressor (CRAC) has been conducted using the Numeca FINE/Turbo 3D viscous turbulent flow solver with the Nonlinear Harmonic (NLH) method. All three blade rows plus the aspiration slot and plenum were included in the computational domain. Both adiabatic and isothermal solid wall boundary conditions were applied and simulations with and without aspiration were completed. The aspirated isothermal boundary condition solutions provide the most accurate representation of the trends produced by the experiment, particularly at the endwalls. These simulations provide significant insight into the flow physics of the aspiration flow path. Time histories and spanwise distributions of flow properties in the aspiration slot and plenum present a flow field with significant temporal and spatial variations. In addition, the results provide an understanding of the aspiration flow path choking mechanism that was previously not well understood and is consistent with experimental results. The slot and plenum had been designed to aspirate 1% of the flow path mass flow, whereas the experiment and simulations show that it chokes at about 0.5% mass flow.

Author(s):  
Robert D. Knapke ◽  
Mark G. Turner

An unsteady analysis of the MIT counter-rotating aspirated compressor (CRAC) has been conducted using the Numeca FINE™/Turbo 3D viscous turbulent solver with the Non-Linear Harmonic (NLH) method. All three blade rows plus the aspiration slot and plenum were included in the computational domain. Both adiabatic and isothermal solid wall boundary conditions were applied and simulations with and without aspiration were completed. Comparison of the aspirated case with data is good. When compared to the adiabatic boundary condition, the isothermal boundary condition solutions showed improvements in predicting stage performance, most notably at the endwalls. The aspiration has a significant impact on the flow field and provides a 4.2% increase in efficiency over the non-aspirated case. Although the slot and plenum had been designed to aspirate 1% of the inlet mass flow, the experiment and simulations show that it chokes at about 0.5%. Details of the aspiration flow path choking mechanism, which was previously not well understood, are presented.


2020 ◽  
Author(s):  
Holly Chubb ◽  
Andrew Russell ◽  
Alejandro Dussaillant ◽  
Stuart Dunning

<p>Landslides and mass flows are dynamic processes that involve the movement of rock, debris and earth down a slope. As a result of the 2017 catastrophic mass flow, these processes have been further established as a significant risk to the population of Chile, and further afield. Through field site investigations, it is possible to develop a greater insight into the mechanisms and conditions that influence the dynamics of these phenomena.</p><p>On Saturday 16 December 2017, a catastrophic debris flow (aluvión) partially destroyed the village of Villa Santa Lucía and a 5 km long reach of the Panamerican Highway resulting in 22 fatalities. The apparent trigger was an intense rainfall event of 124 mm in 24h associated with an elevated 0˚C isotherm (1600 m.a.s.l.) that led to the failure of 5.5 - 6.8x10<sup>6</sup>m<sup>3 </sup> mountainside in the uppermost catchment of Rio Burritos near the SE end of the Cordón Yelcho Glacier. The landslide transformed rapidly into a highly mobile debris flow as it entrained water from the Rio Burritos river and glacier ice from the Cordón Yelcho.</p><p>This study characterises the geomorphological impacts and dynamics of the 2017 mass flow. Post-event DEMs, aerial photos and satellite imagery provided the basis for geomorphological mapping and terrain analysis. Fieldwork in January 2019 allowed sampling of mass flow deposits, logging of sedimentary sections and dGPS surveys.</p><p>Both erosion and deposition occurred over the Villa Santa Lucía flow path. Erosion occurred more frequently in the first 7.9km of the flow path due to high slope angles and presence of the Rio Burritos that channelised flow. A high proportion of coarse particles in the flow enhanced basal scouring and erosion of the valley sides, resulting in significant flow bulking. A total of 7.6x10<sup>6</sup>m<sup>3</sup> – 7.7x10<sup>6</sup>m<sup>3 </sup> of material was deposited across the latter 6.3km of the flow path.</p><p>Sediment sample analysis showed that the flow began as cohesive and viscous in nature in spite of a lack of clay particles and high proportions of sands and gravels. The addition of water from the Rio Burritos reduced the viscosity of the flow as the flow propagated downstream. This resulted in enhanced lobe spreading and particle interactions in the depositional zone. In spite of this water entrainment, the flow remained both sediment and debris rich over its duration.</p><p>Catastrophic mass flows like the event at Villa Santa Lucía are likely to become more common around the world in the future as intense rainfall events become more frequent due to the dominance of El Nino Southern Oscillation (ENSO) events. By studying recent catastrophic mass flow events, an insight into the relationship between mass flow triggers and flow composition will be developed. This will allow for greater understanding of how these influence mass flow behaviours. As a result, it may then be possible to predict the rheology and routes of future flows. These predictions have the ability to be used to protect communities from such events in the future.</p>


2018 ◽  
Vol 2018 ◽  
pp. 1-26 ◽  
Author(s):  
Gang Zhou ◽  
Lei Qiu ◽  
Wenzheng Zhang ◽  
Jiao Xue

The aim of this paper was to develop a model that can characterize the actual micropore structures in coal and gain an in-depth insight into water’s seepage rules in coal pores under different pressure gradients from a microscopic perspective. To achieve this goal, long-flame coals were first scanned by an X-ray 3D microscope; then, through a representative elementary volume (REV) analysis, the optimal side length was determined to be 60 μm; subsequently, by using Avizo software, the coal’s micropore structures were acquired. Considering that the porosity varies in the same coal sample, this study selected four regions in the sample for an in-depth analysis. Moreover, numerical simulations on water’s seepage behaviors in coal under 30 different pressure gradients were performed. The results show that (1) the variation of the simulated seepage velocity and pressure gradient accorded with Forchheimer’s high-velocity nonlinear seepage rules; (2) the permeability did not necessarily increase with the increase of the effective porosity; (3) in the same model, under different pressure gradients, the average seepage pressure decreased gradually, while the average seepage velocity and average mass flow varied greatly with the increase of the seepage length; and (4) under the same pressure gradient, the increase of the average mass flow from the inlet to the outlet became more significant under a higher inlet pressure.


Author(s):  
Andreas Jeromin ◽  
Christian Eichler ◽  
Berthold Noll ◽  
Manfred Aigner

Numerical predictions of conjugate heat transfer on an effusion cooled flat plate were performed and compared to detailed experimental data. The commercial package CFX® is used as flow solver. The effusion holes in the referenced experiment had an inclination angle of 17 degrees and were distributed in a staggered array of 7 rows. The geometry and boundary conditions in the experiments were derived from modern gas turbine combustors. The computational domain contains a plenum chamber for coolant supply, a solid wall and the main flow duct. Conjugate heat transfer conditions are applied in order to couple the heat fluxes between the fluid region and the solid wall. The fluid domain contains 2.4 million nodes, the solid domain 300,000 nodes. Turbulence modeling is provided by the SST turbulence model which allows the resolution of the laminar sublayer without wall functions. The numerical predictions of velocity and temperature distributions at certain locations show significant differences to the experimental data in velocity and temperature profiles. It is assumed that this behavior is due to inappropriate modeling of turbulence especially in the effusion hole. Nonetheless, the numerically predicted heat transfer coefficients are in good agreement with the experimental data at low blowing ratios.


Author(s):  
Mengying Shu ◽  
Mingyang Yang ◽  
Ricardo F. Martinez-Botas ◽  
Kangyao Deng ◽  
Lei Shi

The flow in intake manifold of a heavily downsized internal combustion engine has increased levels of unsteadiness due to the reduction of cylinder number and manifold arrangement. The turbocharger compressor is thus exposed to significant pulsating backpressure. This paper studies the response of a centrifugal compressor to this unsteadiness using an experimentally validated numerical method. A computational fluid dynamic (CFD) model with the volute and impeller is established and validated by experimental measurements. Following this, an unsteady three-dimensional (3D) simulation is conducted on a single passage imposed by the pulsating backpressure conditions, which are obtained by one-dimensional (1D) unsteady simulation. The performance of the rotor passage deviates from the steady performance and a hysteresis loop, which encapsulates the steady condition, is formed. Moreover, the unsteadiness of the impeller performance is enhanced as the mass flow rate reduces. The pulsating performance and flow structures near stall are more favorable than those seen at constant backpressure. The flow behavior at points with the same instantaneous mass flow rate is substantially different at different time locations on the pulse. The flow in the impeller is determined by not only the instantaneous boundary condition but also by the evolution history of flow field. This study provides insights in the influence of pulsating backpressure on compressor performance in actual engine situations, from which better turbo-engine matching might be benefited.


2014 ◽  
Vol 17 (1) ◽  
pp. 213-232 ◽  
Author(s):  
Goktan Guzel ◽  
Ilteris Koc

AbstractIn this study, the Lattice Boltzmann Method (LBM) is implemented through a finite-volume approach to perform 2-D, incompressible, and turbulent fluid flow analyses on structured grids. Even though the approach followed in this study necessitates more computational effort compared to the standard LBM (the so called stream and collide scheme), using the finite-volume method, the known limitations of the stream and collide scheme on lattice to be uniform and Courant-Friedrichs-Lewy (CFL) number to be one are removed. Moreover, the curved boundaries in the computational domain are handled more accurately with less effort. These improvements pave the way for the possibility of solving fluid flow problems with the LBM using coarser grids that are refined only where it is necessary and the boundary layers might be resolved better.


Author(s):  
Ali Mohammadi ◽  
Masoud Boroomand

This paper presents the design procedure of a ducted contra-rotating axial flow fan and investigates the flow behavior inside it using ANSYS CFX-15 flow solver. This study investigates parameters such as pressure ratio, inlet mass flow rate and efficiency in different operating points. This system consists of two rotors with an outer diameter of 434 mm and an inner diameter of 260 mm which rotate contrary to each other with independent nominal rotational speeds of 1300 rpm. Blades’ maximum thickness and rotational speeds of each rotor will be altered as well as the axial distance between the two rotors to investigate their effect on the overall performance of the system. Designed to deliver a total pressure ratio of 1.005 and a mass flow rate of 1.8 kg/s at nominal rotational speeds, this system proves to be much more efficient compared to the conventional rotor-stator fans. NACA-65 airfoils are used in this analysis with the necessary adjustments at each section. Inverse design method is used for the first rotor and geometrical constraints are employed for the second one to have an axial inlet and outlet flow without using any inlet or outlet guide vanes. Using free vortex swirl distribution method, characteristic parameters and the necessary data for 3D generation of this model are obtained. The appropriate grid is generated using ATM method in ANSYS TurboGrid and the model is simulated in CFX-15 flow solver by employing k-ε turbulence model in the steady state condition. Both design algorithm and simulation analysis confirm the high anticipated efficiency for this system. The accuracy of the design algorithm will be explored and the most optimum operating points in different rotational speed ratios and axial distances will be identified. By altering the outlet static pressure of the system, the characteristic map is obtained.


2008 ◽  
Author(s):  
Ankan Kumar ◽  
Sandip Mazumder

Many reacting flow applications mandate coupled solution of the species conservation equations. A low-memory coupled solver was developed to solve the species transport equations on an unstructured mesh with implicit spatial as well as species-to-species coupling. First, the computational domain was decomposed into sub-domains comprised of geometrically contiguous cells—a process termed internal domain decomposition (IDD). This was done using the binary spatial partitioning (BSP) algorithm. Following this step, for each sub-domain, the discretized equations were developed using the finite-volume method, written in block implicit form, and solved using an iterative solver based on Krylov sub-space iterations, i.e., the Generalized Minimum Residual (GMRES) solver. Overall (outer) iterations were then performed to treat explicitness at sub-domain interfaces and non-linearities in the governing equations. The solver is demonstrated for a laminar ethane-air flame calculation with five species and a single reaction step, and for a catalytic methane-air combustion case with 19 species and 22 reaction steps. It was found that the best performance is manifested for sub-domain size of about 1000 cells, the exact number depending on the problem at hand. The overall gain in computational efficiency was found to be a factor of 2–5 over the block Gauss-Seidel procedure.


Author(s):  
Sungho Ko ◽  
Yeon-tae Kim

A numerical study was conducted to predict the performance curve of a downscaled model of the main coolant pump for a sodium-cooled fast reactor and to reduce the head loss by the optimization of the diffuser blade. The ANSYS CFX program was utilized to obtain flow characteristics inside the pump as well as the overall pressure rise across the pump operating on- and off-design points. Computational domain was divided into several blocks to achieve high grid quality effectively and 7.5 million nodes were used totally to resolve small leakage flows as well as the flow inside the rotating impeller. The corresponding experiment was conducted to validate CFD computed results. The comparison between the CFD and experimental data shows excellent agreement in terms of mass flow rate and head rise on and near design operating points. The DOE (design of experiments) and RSM (response surface method)[1] were utilized to reduce the head loss by the diffuser blade in the pump. The diffuser blade was defined as four geometric parameters for DOE. The analysis of 25 cases was made to solve the output parameters for all design points which are defined by the DOE. RSM was fitting the output parameter as a function of the input parameters using regression analysis techniques. The optimized model increased the total pump head on the design point and the low mass flow rate point, but total pump head on 130% of operating mass flow rate was reduced than the initial model.


Sign in / Sign up

Export Citation Format

Share Document