Non-linear resonant instability of short surface waves as the first stage “bag-breakup” process at the air-sea interface at high winds

Author(s):  
Dmitry Kozlov ◽  
Yulia Troitskaya

<p>The recent experimental study [1], [2] identify ‘‘bag breakup’’ fragmentation as the dominant mechanism by which spume droplets are generated at hurricane wind speeds. These droplets can significantly affect the exchanging processes in the air-ocean boundary layer. In order to estimate spray-mediated heat, momentum and mass fluxes we need not only reliable experimental data, but a theoretical model of this process. The “bag-breakup” fragmentation is a strongly non-linear process, and we focus only on its first stage which includes the small-scale elevation of the water surface.</p><p>Our model of the bag’s initiation is based on a weak nonlinear interaction of a longitudinal surface wave and two oblique waves propagating at equal and opposite angles to the flow as it was done in [3], [4]. All of these waves have the same critical layer where cross velocities of oblique waves become infinite making inviscid analysis invalid. So we took into account viscous effects. As a result, it has been established that for a piecewise continuous velocity profile explosive growth of wave amplitudes is possible at the wind speeds exceeding the critical one.</p><p>The present model let us find the dependency of “bag’s” transverse size on the wind speed and estimate its lifetime.</p><p> </p><p> Acknowledgements</p><p>This work was supported by the RSF project 19-17-00209 and the RFBR projects 19-05-00249, 19-35-90053, 18-05-00265.</p><p>References:</p><ol><li>Troitskaya, Y. et al. Bag-breakup fragmentation as the dominant mechanism of sea-spray production in high winds. Sci. Rep. 7, 1614 (2017).</li> <li>Troitskaya, Y. et al. The “Bag Breakup” Spume Droplet Generation Mechanism at High Winds. Part I: Spray Generation Function. J. Phys. Oceanogr., 48, 2167–2188 (2018).</li> <li>A. Craik. Non-linear resonant instability in boundary layers// Journal of Fluid Mechanics. 50, 393-413 (1971).</li> <li>A. Craik. Resonant gravity-wave interactions in a shear flow// Journal of Fluid Mechanics. 34, 531-549 (1968).</li> </ol>

2018 ◽  
Vol 48 (9) ◽  
pp. 2189-2207 ◽  
Author(s):  
Yu. Troitskaya ◽  
O. Druzhinin ◽  
D. Kozlov ◽  
S. Zilitinkevich

AbstractIn Part I of this study, we used high-speed video to identify “bag breakup” fragmentation as the dominant mechanism by which spume droplets are generated at gale-force and hurricane wind speeds. We also constructed a spray generation function (SGF) for the bag-breakup mechanism. The distinctive feature of this new SGF is the presence of giant (~1000 μm) droplets, which may significantly intensify the exchange between the atmosphere and the ocean. In this paper, Part II, we estimate the contribution of the bag-breakup mechanism to the momentum and enthalpy fluxes, which are known to strongly affect the development and maintenance of hurricanes. We consider three contributions to the spray-mediated aerodynamic drag: 1) “bags” as obstacles before fragmentation, 2) acceleration of droplets by the wind in the course of their production, and 3) stable stratification of the marine atmospheric boundary layer due to levitating droplets. Taking into account all of these contributions indicates a peaking dependence of the aerodynamic drag coefficient on the wind speed, which confirms the results of field and laboratory measurements. The contribution of the spray-mediated flux to the ocean-to-atmosphere moist enthalpy is also estimated using the concept of “reentrant spray,” and the equation for the enthalpy flux from a single droplet to the atmosphere is derived from microphysical equations. Our estimates show that a noticeable increase in the enthalpy exchange coefficient at winds exceeding 30–35 m s−1 is due to the enhancement of the exchange processes caused by the presence of giant droplets originating from bag-breakup fragmentation.


2004 ◽  
Vol 61 (7-12) ◽  
pp. 1055-1071
Author(s):  
N. N. Gerasimova ◽  
V. G. Sinitsin ◽  
Yu. M. Yampolski

Author(s):  
Djordje Romanic

Tornadoes and downbursts cause extreme wind speeds that often present a threat to human safety, structures, and the environment. While the accuracy of weather forecasts has increased manifold over the past several decades, the current numerical weather prediction models are still not capable of explicitly resolving tornadoes and small-scale downbursts in their operational applications. This chapter describes some of the physical (e.g., tornadogenesis and downburst formation), mathematical (e.g., chaos theory), and computational (e.g., grid resolution) challenges that meteorologists currently face in tornado and downburst forecasting.


2020 ◽  
Vol 37 ◽  
pp. 63-71
Author(s):  
Yui-Chuin Shiah ◽  
Chia Hsiang Chang ◽  
Yu-Jen Chen ◽  
Ankam Vinod Kumar Reddy

ABSTRACT Generally, the environmental wind speeds in urban areas are relatively low due to clustered buildings. At low wind speeds, an aerodynamic stall occurs near the blade roots of a horizontal axis wind turbine (HAWT), leading to decay of the power coefficient. The research targets to design canards with optimal parameters for a small-scale HAWT system operated at variable rotational speeds. The design was to enhance the performance by delaying the aerodynamic stall near blade roots of the HAWT to be operated at low wind speeds. For the optimal design of canards, flow fields of the sample blades with and without canards were both simulated and compared with the experimental data. With the verification of our simulations, Taguchi analyses were performed to seek the optimum parameters of canards. This study revealed that the peak performance of the optimized canard system operated at 540 rpm might be improved by ∼35%.


Author(s):  
Marcos Donato Ferreira ◽  
Mauro Costa de Oliveira ◽  
Rafaella Cristina Carvalho ◽  
Sergio Hamilton Sphaier

In the development of the mooring design of FPSOs in spread mooring system (SMS) configuration, it was observed that the utilization of asymmetric riser arrangement in deep waters might lead to an asymmetrical roll response of the FPSO. In particular, concentrating all riser connections on the portside, it could be observed that roll and heave coupling under the influence of the riser dynamics might lead to a much lower roll response associated with waves coming from portside than from the starboard direction. Simulations were carried using an in-house time domain simulator, where the ship hydrodynamic behavior was represented through the use of impulse response functions and the lines dynamic through the use of non-linear finite element method, using an explicit integration scheme and a lumped mass approach. Non-linear viscous effects could be easily associated to the ship and line velocities. Measured motion responses of an actual FPSO in operation in Campos Basin are compared with the computations.


2013 ◽  
Vol 28 (1) ◽  
pp. 159-174 ◽  
Author(s):  
Craig Miller ◽  
Michael Gibbons ◽  
Kyle Beatty ◽  
Auguste Boissonnade

Abstract In this study the impacts of the topography of Bermuda on the damage patterns observed following the passage of Hurricane Fabian over the island on 5 September 2003 are considered. Using a linearized model of atmospheric boundary layer flow over low-slope topography that also incorporates a model for changes of surface roughness, sets of directionally dependent wind speed adjustment factors were calculated for the island of Bermuda. These factors were then used in combination with a time-stepping model for the open water wind field of Hurricane Fabian derived from the Hurricane Research Division Real-Time Hurricane Wind Analysis System (H*Wind) surface wind analyses to calculate the maximum 1-min mean wind speed at locations across the island for the following conditions: open water, roughness changes only, and topography and roughness changes combined. Comparison of the modeled 1-min mean wind speeds and directions with observations from a site on the southeast coast of Bermuda showed good agreement between the two sets of values. Maximum open water wind speeds across the entire island showed very little variation and were of category 2 strength on the Saffir–Simpson scale. While the effects of surface roughness changes on the modeled wind speeds showed very little correlation with the observed damage, the effect of the underlying topography led to maximum modeled wind speeds of category 4 strength being reached in highly localized areas on the island. Furthermore, the observed damage was found to be very well correlated with these regions of topographically enhanced wind speeds, with a very clear trend of increasing damage with increasing wind speeds.


2021 ◽  
Vol 153 (A2) ◽  
Author(s):  
R P Dallinga ◽  
R H M Huijsmans

Historically “scale effects” in the interpretation of tests with scale models in waves using Froude’s Law of Similitude are mostly associated with viscous effects. Nowadays, with a much more complete modelling of reality and a focus on higher order non-linear phenomena, scaling of model test results implies a wider range of assumptions than the validity of Froude’s Law. Our contribution to the conference is a visionary review of contemporary and future problems in the interpretation of these tests. In this context we will discuss the developments in test techniques, including the development of a new Two-Phase Laboratory facilitating seakeeping and sloshing tests at reduced air pressure.


Author(s):  
Bowen Yan ◽  
Yangjin Yuan ◽  
Dalong Li ◽  
Ke Li ◽  
Qingshan Yang ◽  
...  

The semi-periodic vortex-shedding phenomenon caused by flow separation at the windward corners of a rectangular cylinder would result in significant vortex-induced vibrations (VIVs). Based on the aeroelastic experiment of a rectangular cylinder with side ratio of 1.5:1, 2-dimensional (2D) and 2.5-dimensional (2.5D) numerical simulations of the VIV of a rectangular cylinder were comprehensively validated. The mechanism of VIV of the rectangular cylinder was in detail discussed in terms of vortex-induced forces, aeroelastic response, work analysis, aerodynamic damping ratio and flow visualization. The outcomes showed that the numerical results of aeroelastic displacement in the cross-wind direction and the vortex-shedding procedure around the rectangular cylinder were in general consistence with the experimental results by 2.5D numerical simulation. In both simulations, the phase difference between the lift and displacement response increased with the reduced wind speed and the vortex-induced resonance (VIR) disappeared at the phase difference of approximately 180∘. The work done by lift force shows a close relationship with vibration amplitudes at different reduced wind speeds. In 2.5D simulations, the lift force of the rectangular cylinder under different wind speeds would be affected by the presence of small-scale vortices in the turbulence flow field. Similarly, the phase difference between lift force and displacement response was not a constant with the same upstream wind speed. Aerodynamic damping identified from the VIV was mainly dependent on the reduced wind speed and negative damping ratios were revealed at the lock-in regime, which also greatly influenced the probability density function (PDF) of wind-induced displacement.


2011 ◽  
Vol 52 (57) ◽  
pp. 271-278 ◽  
Author(s):  
Katherine C. Leonard ◽  
Ted Maksym

AbstractSnow distribution is a dominating factor in sea-ice mass balance in the Bellingshausen Sea, Antarctica, through its roles in insulating the ice and contributing to snow-ice production. the wind has long been qualitatively recognized to influence the distribution of snow accumulation on sea ice, but the relative importance of drifting and blowing snow has not been quantified over Antarctic sea ice prior to this study. the presence and magnitude of drifting snow were monitored continuously along with wind speeds at two sites on an ice floe in the Bellingshausen Sea during the October 2007 Sea Ice Mass Balance in the Antarctic (SIMBA) experiment. Contemporaneous precipitation measurements collected on board the RVIB Nathaniel B. Palmer and accumulation measurements by automated ice mass-balance buoys (IMBs) allow us to document the proportion of snowfall that accumulated on level ice surfaces in the presence of high winds and blowing-snow conditions. Accumulation on the sea ice during the experiment averaged <0.01 m w.e. at both IMB sites, during a period when European Centre for Medium-Range Weather Forecasts analyses predicted >0.03 m w.e. of precipitation on the ice floe. Accumulation changes on the ice floe were clearly associated with drifting snow and high winds. Drifting-snow transport during the SIMBA experiment was supply-limited. Using these results to inform a preliminary study using a blowing-snow model, we show that over the entire Southern Ocean approximately half of the precipitation over sea ice could be lost to leads.


Sign in / Sign up

Export Citation Format

Share Document