Last deglaciation in the central Balkan Peninsula: geochronological evidence from the Jablanica and Jakupica Mts (North Macedonia)

Author(s):  
Zsófia Ruszkiczay-Rüdiger ◽  
Zoltán Kern ◽  
Marjan Temovski ◽  
Balázs Madarász ◽  
Ivica Milevski ◽  
...  

<p>Several studies applied numerical age determination methods to examine glacial phases of the central Balkan Peninsula. However, the resulting conflicting datasets require further discussion. This study provides <sup>10</sup>Be Cosmic Ray Exposure (CRE) ages of a succession of glacial landforms in the Jablanica and Jakupica Mts (North Macedonia), aiming at a better understanding of Late Pleistocene glacier development in the area.</p><p>In the Jablanica Mt. (~41.25° N; Crn Kamen, 2257 m a.s.l.) six glacial stages were identified (Temovski et al., 2018). The CRE ages of five glacial stages (from the second oldest to the youngest) range from 16.8<sup>+0.8</sup>/<sub>-0.5</sub> ka to 13.0<sup>+0.4</sup>/<sub>-0.9</sub> ka. Accordingly, the most extensive glaciation in the Jablanica Mt. occurred before ~17 ka (Ruszkiczay et al., 2020).</p><p>Based on the accumulation area balance ratios (AABR) of the reconstructed glaciers, their mean equilibrium line altitudes (ELAs) were estimated. The average ELA of the glaciers was 1792±18 m a.s.l. during the largest ice extent, and 2096±18 m a.s.l. during the last phase of the deglaciation.</p><p>Independent reconstructions of key climatic drivers of glaciological mass balance suggest that glacial re-advances during the deglaciation in the Jablanica Mt. were associated to cool summer temperatures before ~15 ka. The last glacial stillstand may result from a modest drop in summer temperature coupled with increased winter snow accumulation. In the study area no geomorphological evidence for glacier advance after ~13.0<sup>+0.4</sup>/<sub>-0.9</sub> ka could be found. Relying on independent climate proxies we propose that (i) the last glacier advance occurred no later than ~13 ka, and (ii) the glaciers were withdrawing during the Younger Dryas when low temperatures were combined with dry winters.</p><p>In the Jakupica Mt. (~41.7° N, Solunska Glava, 2540 m a.s.l.) a large plateau glacier was reconstructed. The study area comprised six eastward facing, formerly glaciated valleys. Cirque floor elevations range from ~2180 m a.s.l. at Salakova Valley, to between ~2115 and ~2210 m a.s.l. on the carbonate plateau. The lowest mapped moraines are descending down to 1550-1700 m a.s.l. Due to the large plateau ice and the complicated system of confluences, glacier reconstructions using semi-automated GIS tools are problematic. Four to six deglaciation phases were reconstructed, and a preliminary estimation of the ELAs based on the maximum elevation of the lowermost lateral moraines leads to ELA values of 1800±50 m a.s.l. for the most extended phase. Multiple CRE ages for the subsequent glacial stages are also being acquired for Jakupica Mts.</p><p>This research was supported by the NKFIH FK124807 and GINOP-2.3.2-15-2016-00009 projects, by the INSU/CNRS and the ANR through the program “EQUIPEX Investissement d’Avenir” and IRD and by the Radiate Transnational Access 19001688-ST.</p><p>Ruszkiczay-Rüdiger Zs., Kern Z, Temovski M, Madarász B, Milevski I, Braucher R, ASTER Team (2020) Last deglaciation in the central Balkan Peninsula: Geochronological evidence from Jablanica Mt (North Macedonia). Geomorphology 351: 106985</p><p>Temovski M, Madarász B, Kern Z, Milevski I, Ruszkiczay-Rüdiger Zs. (2018) Glacial geomorphology and preliminary glacier reconstruction in the Jablanica Mountain, Macedonia, Central Balkan Peninsula. Geosciences 8(7): 270</p>

2021 ◽  
Author(s):  
Zsófia Ruszkiczay-Rüdiger ◽  
Zoltán Kern ◽  
Marjan Temovski ◽  
Balázs Madarász ◽  
Ivica Milevski ◽  
...  

<p>Since the 19<sup>th</sup> century, geomorphological studies in the currently mainly unglaciated central Balkan Peninsula described extended glacial landforms and repeated glaciations. With the growing number of numerical ages an ambiguous picture has formed concerning the timing of the most extended glaciation and also on the glacier response to the cooling phases (e.g. Younger Dryas) during the last deglaciation of these mountain ranges.</p><p>This study provides <sup>10</sup>Be cosmic ray exposure ages of a succession of glacial landforms in the Jakupica Mt. (North Macedonia), aiming to improve the understanding of Late Pleistocene glacier development in the area [1].</p><p>In the Jakupica Mt. (~41.7° N, ~21.4 E; Solunska Glava, 2540 m asl) a large plateau glacier was reconstructed (max. area ~45 km<sup>2</sup>, max thickness: ~300 m), where three main ice accumulation areas could be delineated [2]. The study area comprises six northeastward facing, formerly glaciated valleys. Two of these valleys emerge from the plateau, one stands separate, and the remaining three are topographically separated by a relatively flat NNW-SSE oriented ridge. During the most extensive glacial stages, these three valleys were fed by ice overflowing above this ridge from the plateau. The lowest mapped moraines are descending down to 1550-1700 m asl suggesting the former existence of glacier tongues of ~3 km length. The large plateau ice and the complicated system of confluences makes glacier reconstructions and equilibrium line altitude (ELA) calculations challenging. Thus, the ELAs were preliminary estimated based on the maximum elevation of the lowermost lateral moraines, leading to ELA values of 1800±50 m a.s.l. for the most extended phase.</p><p>The maximum ice extent outlined by the lowest mapped moraines descending down to 1550-1500 m asl. occurred around ~24-19 ka (n=5), in agreement with the timing of the Last Glacial Maximum. During the Lateglacial, the exposure ages are getting younger by the glacier recession up to the moraines at ~1820 m asl (~19-14 ka, n=15). However, the highest sampled landforms (~2200 m asl) provided ages with a large scatter between ~25 and ~5 ka (n=6). This large scatter and the observed bias towards old ages are most probably the result of inherited cosmogenic nuclide concentrations within the rock. Consequently, <sup>10</sup>Be exposure ages alone are apparently not suitable to determine the age of final deglaciation of this mountain. Similar conditions have been observed in the Retezat Mts (Southern Carpathians, Romania) [3].</p><p>This research was supported by the NKFIH FK124807 and GINOP-2.3.2-15-2016-00009 projects and by the Radiate Transnational Access 19001688-ST.</p><p>[1] Ruszkiczay-Rüdiger et al., 2020. Last deglaciation in the central Balkan Peninsula: Geochronological evidence from Jablanica Mt. (North Macedonia). Geomorphology 351: 106985</p><p>[2] Temovski et al., 2019. Glacial geomorphology of the northeastern part of the Jakupica Mountain, Macedonia, Central Balkan Peninsula. GRA 21, EGU2019-7822</p><p>[3] Ruszkiczay-Rüdiger et al., 2018. Glacier reconstruction, deglaciation chronology and paleo-environment reconstruction, Retezat Mountains, Southern Carpathians, Romania. Geologica Balcanica; Abstracts of the XXI. CBGA Congress, Salzburg, 10-13 September; p. 240-241.</p>


Geomorphology ◽  
2020 ◽  
Vol 351 ◽  
pp. 106985 ◽  
Author(s):  
Zsófia Ruszkiczay-Rüdiger ◽  
Zoltán Kern ◽  
Marjan Temovski ◽  
Balázs Madarász ◽  
Ivica Milevski ◽  
...  

2013 ◽  
Vol 80 (3) ◽  
pp. 482-494 ◽  
Author(s):  
Julien Carcaillet ◽  
Isandra Angel ◽  
Eduardo Carrillo ◽  
Franck A. Audemard ◽  
Christian Beck

In the tropical Mérida Andes (northwestern Venezuela), glacial landforms were found at altitudes between 2600 and 5000 m, corresponding to 600 km2 of ice cover during the maximum glacial extension. However, the lack of sufficient absolute age data prevents detailed reconstruction of the timing of the last deglaciation. On the northwestern flank of the Mucuñuque Massif, successive moraines and striated eroded basement surfaces were sampled for cosmogenic 10Be investigation. Their compilation with published data allows the establishment of a detailed chronology of the post-LGM glacier history. The oldest moraines (18.1 and 16.8 ka) correspond to the Oldest Dryas. Successive moraine ridges indicate stops in the overall retreat between the LGM and the Younger Dryas. The cold and short Older Dryas stadial has been identified. Results indicate that most of the ice withdrew during the Pleistocene. The dataset supports an intensification of the vertical retreat rate from ~ 25 m/ka during the late Pleistocene to ~ 310 m/ka during the Pleistocene/Holocene. Afterwards, the glacier was confined and located in the higher altitude zones. The altitude difference of the Younger Dryas moraines in the Mucubají, La Victoria and Los Zerpa valleys indicates a strong effect of valley orientation on the altitude of moraine development.


Radiocarbon ◽  
1966 ◽  
Vol 8 ◽  
pp. 235-238 ◽  
Author(s):  
H. Willkomm ◽  
H. Erlenkeuser

The C14 Laboratory at Kiel University was established in 1963. It continues measurements, which were made at the Institut für Kernphysik, Kiel, on age determination with Chlorine 36, which is produced by cosmic ray neutrons (Bagge and Willkomm, 1963, 1966). The first C14-counting apparatus was completed in 1964 and dating work started at the end of 1964 after extensive general tests of counter working conditions (Erlenkeuser, 1965). The data reported here have been obtained during the first half of 1965. During this period the dating measurements were interrupted on numerous occasions by measurements of background and the oxalic standard in order to check long-time variations of the apparatus.


2019 ◽  
Vol 210 ◽  
pp. 06009
Author(s):  
Andreas Haungs

An upgrade of the present IceCube surface array (IceTop) with scintillation detectors and possibly radio antennas is foreseen. The enhanced array will calibrate the impact of snow accumulation on the reconstruction of cosmic-ray showers detected by IceTop as well as improve the veto capabilities of the surface array. In addition, such a hybrid surface array of radio antennas, scintillators and Cherenkov tanks will enable a number of complementary science targets for IceCube such as enhanced accuracy to mass composition of cosmic rays, search for PeV photons from the Galactic Center, or more thorough tests of the hadronic interaction models. Two prototype stations with 7 scintillation detectors each have been already deployed at the South Pole in January 2018. These R&D studies provide a window of opportunity to integrate radio antennas with minimal effort.


2019 ◽  
Vol 13 (12) ◽  
pp. 3413-3434 ◽  
Author(s):  
Rebecca Gugerli ◽  
Nadine Salzmann ◽  
Matthias Huss ◽  
Darin Desilets

Abstract. Snow water equivalent (SWE) measurements of seasonal snowpack are crucial in many research fields. Yet accurate measurements at a high temporal resolution are difficult to obtain in high mountain regions. With a cosmic ray sensor (CRS), SWE can be inferred from neutron counts. We present the analyses of temporally continuous SWE measurements by a CRS on an alpine glacier in Switzerland (Glacier de la Plaine Morte) over two winter seasons (2016/17 and 2017/18), which differed markedly in the amount and timing of snow accumulation. By combining SWE with snow depth measurements, we calculate the daily mean density of the snowpack. Compared to manual field observations from snow pits, the autonomous measurements overestimate SWE by +2 % ± 13 %. Snow depth and the bulk snow density deviate from the manual measurements by ±6 % and ±9 %, respectively. The CRS measured with high reliability over two winter seasons and is thus considered a promising method to observe SWE at remote alpine sites. We use the daily observations to classify winter season days into those dominated by accumulation (solid precipitation, snow drift), ablation (snow drift, snowmelt) or snow densification. For each of these process-dominated days the prevailing meteorological conditions are distinct. The continuous SWE measurements were also used to define a scaling factor for precipitation amounts from nearby meteorological stations. With this analysis, we show that a best-possible constant scaling factor results in cumulative precipitation amounts that differ by a mean absolute error of less than 80 mm w.e. from snow accumulation at this site.


2004 ◽  
Vol 39 ◽  
pp. 457-466 ◽  
Author(s):  
Roberto Udisti ◽  
Silvia Becagli ◽  
Silvia Benassai ◽  
Martine De Angelis ◽  
Margareta E. Hansson ◽  
...  

AbstractTo assess the cause/effect relationship between climatic and environmental changes, we report high-resolution chemical profiles of the Dome C ice core (788m, 45 kyr), drilled in the framework of the European Project for Ice Coring in Antarctica (EPICA). Snow-concentration and depositional-flux changes during the last deglaciation were compared with climatic changes, derived by δD profile. Concentration and temperature profiles showed an anticorrelation, driven by changes in source intensity and transport efficiency of the atmospheric aerosol and by snow accumulation-rate variations. The flux calculation allowed correction for accumulation rate. While sulphate and ammonium fluxes are quite constant, Na+, Mg2+ and Ca2+ underwent the greatest changes, showing fluxes respectively about two, three and six times lower in the Holocene than in the Last Glacial Maximum. Chloride, nitrate and methanesulphonic acid (MSA) also exhibited large changes, but their persistence depends on depositional and post-depositional effects. The comparison between concentrations and δD profiles revealed leads and lags between chemical and temperature trends: Ca2+ and nitrate preceded by about 300 years the δD increase at the deglaciation onset, while MSA showed a 400 year delay. Generally, all components reached low Holocene values in the first deglaciation step (18.0–14.0 kyr BP), but Na+, Mg2+ and nitrate show changes during the Antarctic Cold Reversal (14.0– 12.5 kyr BP).


2014 ◽  
Vol 39 (2) ◽  
pp. 168-198 ◽  
Author(s):  
Tomáš Pánek

Recent progress of dating techniques has greatly improved the age determination of various types of landslides. Since the turn of the 21st century, the number of dated landslides throughout the world has increased several fold and the introduction of modern dating methods (e.g. cosmic ray exposure dating) has enabled the dating of new landslide features and elements. Based on the analysis of >950 dated landslides (of which 734 have been dated since the year 2000), it is clear that the predominant traditional strategies have continued to rely on the radiocarbon method; however, there is a remarkable trend of using cosmic ray exposure techniques for dating both the accumulation (e.g. landslide boulders) and the depletion (e.g. landslide scarps) parts of landslides. Furthermore, an increasing number of slope failures is determined by a multi-dating approach, which enables the verification of particular dating methods. Although coherent regional landslide chronologies are still relatively scarce in comparison with extensive databases of fluvial, glacial and/or eolian landforms, they offer important insights into temporal landslide distribution, long-term landslide behavior and their relationships with paleoenvironmental changes. The most extensive data sets exist for the mountain areas of North America (Pacific Coast Ranges), South America (Andes), Europe (Alps, Scottish Highlands, Norway, Carpathians and Apennines), the Himalaya-Tibet orogeny and the Southern Alps of New Zealand. Dated landslides in the plate interiors are lacking, especially in South America, Africa and Australia. Despite the fact that some dating results are well correlated with major regional and continental-scale changes in the seismic activity, moisture abundance, glacier regimes and vegetation patterns, some of these results contradict previously established straightforward hypotheses. This indicates the rather complex chronological behavior of landslides, reflecting both intrinsic (e.g. gradual stress relaxation within a rock mass) and external factors, including high-magnitude earthquakes or heavy rainfalls.


2019 ◽  
Author(s):  
Rebecca Gugerli ◽  
Nadine Salzmann ◽  
Matthias Huss ◽  
Darin Desilets

Abstract. Snow water equivalent (SWE) measurements are crucial in many research fields. Yet accurate measurements at a high temporal resolution are difficult to obtain in high mountain regions. With a cosmic ray sensor (CRS), SWE can be directly derived from neutron counts. In this study, we present the analyses of temporally continuous SWE measurements by a CRS on a Swiss glacier (Glacier de la Plaine Morte) over two winter seasons (2016/17 and 2017/18), which were markedly different in terms of amount and timing of snow accumulation. By combining the SWE values with snow depth measurements, we calculate the daily mean density of the snowpack. The autonomous measurements overestimate SWE by +2 % ± 12 % compared to manual field observations (snow pits). Snow depth and mean density agree with manual in situ measurements with a standard deviation of ±6 % and ±8 %, respectively. In general, the cosmic ray sensor measured with high reliability during these two winter seasons and is, thus, considered an effective method to measure SWE at remote high alpine sites. We use the daily observations to break down the winter season into days either dominated by accumulation (solid precipitation, snow drift), ablation (snow drift, melt) or snow densification. The prevailing meteorological conditions of these periods are clearly distinct for each of the classified processes. Moreover, we compare daily SWE amounts to precipitation sums from three nearby weather stations located at lower elevations, and to a gridded precipitation dataset. We determine the best-possible scaling factor for these precipitation estimates in order to reproduce the measured accumulation on the glacier. Using only one scaling factor for the whole time series, we find a mean absolute error of less than 8 cm w.e. for the reproduced snow accumulation. By applying temperature-specific scaling factors, this mean absolute error can be reduced to less than 6 cm w.e. for all stations.


2020 ◽  
Author(s):  
Carole Petit ◽  
Rolland Yann ◽  
Braucher Régis ◽  
Bourlès Didier ◽  
Cardinal Thibaut ◽  
...  

<p>In South-Western European Alps, although scarce, evidences of recent vertical motions suggest a slow (~0.1 mm/yr) uplift of the northern Ligurian margin, which increases towards to East from the Var river mouth to the gulf of Genova. Whether this uplift is due to active compressional tectonics, to isostatic rebound or to a combination of both is still unclear. In addition, because of the large topographic gradient, rivers have carved deep gorges in the bedrock of the SW subalpine chains. However, neither the role of vertical motion nor that of climatic changes since the LGM on river incision rates is well established.</p><p>Over the last 10 years, a dataset of <sup>10</sup>Be and <sup>36</sup>Cl based cosmic ray exposure (CRE) ages obtained on river and glacier polished surfaces in the SW French Alps has been gathered. This dataset covers several areas located in the Argentera crystalline massif, in the Nice and Castellane subalpine chains, and in the Provence domain.</p><p>We will present a compilation of these data in an attempt to answer the following questions: - what is the influence of the last glaciation on river incision rates? - Is there any evidence of a W-E gradient in incision rates that could reflect increasing uplift rates of the SW Alps and North Ligurian margin? First results tend to indicate that all river incision rates are remarkably similar since the Holocene glacial optimum, whereas two different tendencies arise before that time: catchments within the influence of Alpine glaciers tend to have larger incision rates during the last deglaciation, while at the same time catchments out of any glacial influence have slightly lower incision rates. This suggests that, at first order, the release of glacier meltwaters enhanced river incision rates downstream during the ~20-12 ka period.</p>


Sign in / Sign up

Export Citation Format

Share Document