Anthropogenic desilication of agricultural soils – Results from a long-term field experiment in NE Germany

Author(s):  
Daniel Puppe ◽  
Danuta Kaczorek ◽  
Michael Sommer

<p>Due to intensified land use (agriculture, forestry) humans directly influence silicon (Si) cycling on a global scale. In this context, especially Si exports by harvested crops (most of them are Si accumulators) and increased erosion rates generally lead to a Si loss in agricultural soils (anthropogenic desilication). Harvesting of field crops can cause Si losses of up to 100 kg Si ha<sup>-1</sup> per year. On a global scale about 35% of total phytogenic Si is synthesized by field crops due to their relatively high Si contents as well as biomasses and this proportion is going to increase with increased agricultural production within the next decades. In order to avoid (natural) limitations of plant available Si and enhance plant growth and resistance against abiotic and biotic stresses, Si fertilization is widely used, especially in (sub)tropical agricultural systems. In this context, specific Si fertilization, for example, in the form of recycled organic siliceous materials (e.g., straw, biochar), might be a promising strategy for both increasing crop yields and decreasing desilication of agricultural soils. However, most studies focus on rice and sugarcane production and there is still only little knowledge about Si cycling in agricultural systems of the temperate zone. We analyzed soil and plant samples from an ongoing long-term field experiment (established 1963, randomized block design: plots with low, medium, and high mineral NPK fertilization rates, plots with straw fertilization in addition to NPK fertilization, control plots) in NE Germany to answer the following questions: (i) Can we observe a significant desilication (indicated by a decrease in plant available Si in soils) of agricultural systems in the temperate zone in the long term?, (ii) Is this potential desilication affected by NPK fertilization rates?, (iii) Is this potential decrease of plant available Si in soils reflected in Si concentrations of the grown plants (e.g., wheat)?, and (iv) Can we prevent potential anthropogenic desilication by straw fertilization? Here we present our first results to answer these questions. The answers to these questions will help us to obtain a deeper understanding of Si cycling in agricultural biogeosystems in the temperate zone in general and to derive practice-oriented recommendations for a more environmentally friendly and sustainable crop production in particular.</p>

Geoderma ◽  
2021 ◽  
Vol 403 ◽  
pp. 115187
Author(s):  
Daniel Puppe ◽  
Danuta Kaczorek ◽  
Jörg Schaller ◽  
Dietmar Barkusky ◽  
Michael Sommer

2015 ◽  
Vol 12 (19) ◽  
pp. 16527-16551 ◽  
Author(s):  
C. Poeplau ◽  
M. A. Bolinder ◽  
H. Kirchmann ◽  
T. Kätterer

Abstract. Increasing soil organic carbon (SOC) in agricultural soils can mitigate atmospheric CO2 concentration and also contribute to increase soil fertility and ecosystem resilience. The role of major nutrients on SOC dynamics is complex, due to simultaneous effects on net primary productivity (NPP) that influence crop residue carbon inputs and on the rate of heterotrophic respiration (carbon outputs). This study investigated the effect on SOC stocks of three different levels of phosphorus and potassium (PK) fertilisation rates in the absence of nitrogen fertilisation and of three different levels of nitrogen in the absence of PK. This was done by analysing data from 10 meta-replicated Swedish long-term field experiments (> 45 years). With N fertilisation, SOC stocks followed yield increases. However, for all PK levels, we found average SOC losses ranging from −0.04 ± 0.09 Mg ha−1 yr−1 (ns) for the lowest to −0.09 ± 0.07 Mg ha−1 yr−1 (p = 0.008) for the highest application rate, while crop yields as a proxy for carbon input increased significantly with PK fertilization by 1, 10 and 15 %. We conclude that SOC dynamics are mainly output-driven in the PK fertilised regime but mostly input-driven in the N fertilised regime, due to the much more pronounced response of NPP to N than to PK fertilisation. It has been established that P rather than K is the element affecting ecosystem carbon fluxes, where P fertilisation has been shown to: (i) stimulate heterotrophic respiration, (ii) reduce the abundance of arbuscular mycorrhizal fungi and (iii) decrease crop root : shoot ratio, leading to lower root-derived carbon input. The higher export of N in the PK fertilised plots in this study could (iv) have led to increased N mining and thus mineralisation of organic matter. More integrated experiments are needed to gain a better understanding of the relative importance of each of the above-mentioned mechanisms leading to SOC losses after P addition.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Simone Tosi ◽  
James C. Nieh ◽  
Annely Brandt ◽  
Monica Colli ◽  
Julie Fourrier ◽  
...  

AbstractThe assessment of pesticide risks to insect pollinators have typically focused on short-term, lethal impacts. The environmental ramifications of many of the world’s most commonly employed pesticides, such as those exhibiting systemic properties that can result in long-lasting exposure to insects, may thus be severely underestimated. Here, seven laboratories from Europe and North America performed a standardised experiment (a ring-test) to study the long-term lethal and sublethal impacts of the relatively recently approved ‘bee safe’ butenolide pesticide flupyradifurone (FPF, active ingredient in Sivanto®) on honey bees. The emerging contaminant, FPF, impaired bee survival and behaviour at field-realistic doses (down to 11 ng/bee/day, corresponding to 400 µg/kg) that were up to 101-fold lower than those reported by risk assessments (1110 ng/bee/day), despite an absence of time-reinforced toxicity. Our findings raise concerns about the chronic impact of pesticides on pollinators at a global scale and support a novel methodology for a refined risk assessment.


2016 ◽  
Vol 13 (4) ◽  
pp. 1119-1127 ◽  
Author(s):  
Christopher Poeplau ◽  
Martin A. Bolinder ◽  
Holger Kirchmann ◽  
Thomas Kätterer

Abstract. Increasing soil organic carbon (SOC) in agricultural soils can mitigate atmospheric CO2 concentration and also contribute to increased soil fertility and ecosystem resilience. The role of major nutrients in SOC dynamics is complex, due to simultaneous effects on net primary productivity (NPP) that influence crop residue carbon inputs and in the rate of heterotrophic respiration (carbon outputs). This study investigated the effect on SOC stocks of three different levels of phosphorus and potassium (PK) fertilisation rates in the absence of nitrogen fertilisation and of three different levels of nitrogen fertiliser in the absence of PK fertiliser. This was done by analysing data from 10 meta-replicated Swedish long-term field experiments (> 45 years). With N fertilisation, SOC stocks followed yield increases. However, for all PK levels, we found average SOC losses ranging from −0.04 ± 0.09 Mg ha−1 yr−1 (ns) for the lowest to −0.09 ± 0.07 Mg ha−1 yr−1 (p =  0.008) for the highest application rate, while crop yields as a proxy for carbon input increased significantly with PK fertilisation by 1, 10 and 15 %. We conclude that SOC dynamics are mainly output-driven in the PK-fertilised regime but mostly input-driven in the N-fertilised regime, due to the much more pronounced response of NPP to N than to PK fertilisation. It has been established that P rather than K is the element affecting ecosystem carbon fluxes, where P fertilisation has been shown to (i) stimulate heterotrophic respiration, (ii) reduce the abundance of arbuscular mycorrhizal fungi and (iii) decrease the crop root : shoot ratio, leading to higher root-derived carbon input. The higher export of N in the PK-fertilised plots in this study could (iv) have led to increased N mining and thus mineralisation of organic matter. More integrated experiments are needed to gain a better understanding of the relative importance of each of the above-mentioned mechanisms leading to SOC losses after P addition.


PLoS ONE ◽  
2018 ◽  
Vol 13 (4) ◽  
pp. e0195345 ◽  
Author(s):  
Loreen Sommermann ◽  
Joerg Geistlinger ◽  
Daniel Wibberg ◽  
Annette Deubel ◽  
Jessica Zwanzig ◽  
...  

Author(s):  
Jānis Vigovskis ◽  
Aivars Jermušs ◽  
Agrita Švarta

The aim of the research was to study the influence of mineral fertilizers and liming on yields of field crops and agrochemical parameters of soil and loss of plant nutrients through drain water. Since 1982, long-term field trials were carried out under crop succession with long-term grass, grain (rye, triticale, spring wheat, barley, oat), potatoes and rape. Annually from soil thought drains were leached about 3.0 - 21.9 kg ha-1 nitrogen, 0.1 - 0.5 kg ha'1 and 0.6 -1.7 kg ha-1 potassium. Application of P0 and P30 led to the further decrease of phosphorus content as fa r as 0-6 mg kg especially in limed soil. Significant increase of phosphorus content was observed only using phosphorus rate P90. Positive NPK balance in limed trial plots was achieved with annual inputs of 90 kg ha-1 N, 100 kg ha-1 P20 s and 90 Kg ha-1 K20.


2018 ◽  
Vol 64 (No. 6) ◽  
pp. 255-259 ◽  
Author(s):  
Zbíral Jiří ◽  
Smatanová Michaela ◽  
Němec Pavel

Several sets of soil samples were chosen to demonstrate the applicability of the Mehlich 3 extractant for the determination of sulphur (S) in soils. Archived samples from 139 basal soil monitoring plots (BSMS) sampled in 1995 and 2013, samples from eleven long-term field trials sampled in 1981 and 2017, 1167 soil samples from the areas vulnerable to S losses and 720 samples from the non-vulnerable areas sampled in 2010 were chosen for the experiments. Mehlich 3 clearly showed a statistically highly significant decrease in the soil S content caused by reduction of SO<sub>2</sub> emissions in the long-term field experiments from 33 mg/kg in 1981 to 8 mg/kg in 2017 for the median of the untreated controls. Similar results were obtained for BSMS samples, where an average decrease from 26 mg/kg in 1995 to 17 mg/kg in 2013 was found. Mehlich 3 also showed that more than 52% of samples from the areas vulnerable to S losses were in a very low content category in contrast to only 3% of soils from the other areas. Mehlich 3 clearly proved the capacity to distinguish changes in the content of soil S in all studied cases.  


2014 ◽  
Vol 63 (1) ◽  
pp. 139-148 ◽  
Author(s):  
Éva Lehoczky ◽  
M. Kamuti ◽  
N. Mazsu ◽  
J. Tamás ◽  
D. Sáringer-Kenyeres ◽  
...  

Plant nutrition is one of the most important intensification factors of crop production. The utilization of nutrients, however, may be modified by a number of production factors, including weed presence. Thus, the knowledge of occurring weed species, their abundance, nutrient and water uptake is extremely important to establish an appropriate basis for the evaluation of their risks or negative effects on crops. That is why investigations were carried out in a long-term fertilization experiment on the influence of different nutrient supplies (Ø, PK, NK, NPK) on weed flora in maize field.The weed surveys recorded similar diversity on the experimental area: the species of A. artemisiifolia, S. halepense and D. stramonium were dominant, but C. album and C. hybridum were also common. These species and H. annuus were the most abundant weeds.Based on the totalized and average data of all treatments, density followed the same tendency in the experimental years. It was the highest in the PK treated and untreated plots, and significantly exceeded the values of NK fertilized areas. Presumably the better N availability promoted the development of nitrophilic weeds, while the mortality of other small species increased.Winter wheat and maize forecrops had no visible influence on the diversity and the intensity of weediness. On the contrary, there were consistent differences in the density of certain weed species in accordance to the applied nutrients. A. artemisiifolia was present in the largest number in the untreated control and PK fertilized plots. The density of S. halepense and H. annuus was also significantly higher in the control areas. The number of their individuals was smaller in those plots where N containing fertilizers were used. Contrary to them, the density of D. stramonium, C. album and C. hybridum was the highest in the NPK treatments.


2013 ◽  
Vol 62 (2) ◽  
pp. 311-330
Author(s):  
Jakab Loch ◽  
János Lazányi

Az Országos Műtrágyázási Tartamkísérletek (OMTK) tizenkét NPK kezeléskombinációjában, kilenc termőhelyen vizsgáltuk az NPK-trágyázás hatását az őszi búza és a kukorica termésére és a talajok 0,01 M CaCl2-oldható tápelemtartalmára. A termőhelyek: Bicsérd (BI), Hajdúböszörmény (HA), Iregszemcse (IR), Karcag (KA), Keszthely (KE), Kompolt (KO), Mosonmagyaróvár (MO), Nagyhörcsök (NA), Putnok (PU). Az NPK kezelések: 000, 101, 111, 121, 201, 220, 221, 222, 331, 341, 421, 441. A N- és P-kezelések a kódoknak megfelelően 50 kg N, ill. P2O5·ha−1, a K-adagok 100 kg K2O·ha−1 hatóanyag-mennyiséggel növekszenek. Az őszi búza termésadatok a 23., 24., 27., 28. és 31. évi kísérletekből, a kukoricatermések a 25., 26., 29. és 30. évből származnak.Az NPK-kezelések jelentősen növelték az őszi búza és a kukorica öt-, illetve négyéves átlagtermését, szignifikáns különbségek jöttek létre a termőhelyek átlagában. Az NPK-kezelések különböző érvényesülése az egyes termőhelyeken az eltérő ökológiai viszonyok, köztük a különböző eredeti tápelemtartalom és szolgáltató képesség következménye.Az NPK-kezelések hatására a talajok 0,01 M CaCl2-oldható tápelemtartalma is jelentősen változott. A növények tápelemigényét meghaladó kezelések tartamhatásaként tápelem-felhalmozódás igazolható mindhárom tápelem esetében. A növények szükségletét meghaladó N-adagok, a karbonátos talajokat és a nagy agyagtartalmú kompolti (KO) talajt kivéve csökkentették a talaj pH-t. A másodfokú görbék az őszi búza ötéves termésátlaga és a 0,01 M CaCl2-ban mért összes-N, P- és K-tartalom közötti összefüggéseket szemléltetik termőhelyenként.A legnagyobb kezeléshatások azokon a talajokon igazolhatók, melyeken a kontroll 0,01 M CaCl2-oldható összes-N értéke kisebb, mint 5–10 mg·kg−1. A 15,0 mg·kg−1 érték felett altalaban nem érvényesült a nitrogén termésnövelő hatása. Kivételt képez a tápanyagban gazdag, hajdúböszörményi nem karbonátos réti talaj. A foszfor termésnövelő hatása 2,0 mg P·kg−1 érték felett — a karbonátos réti talaj kivételével — általában nem érvényesül. Az összefüggéseket jellemző R2 meghatározottsági tényezők a legkisebbek az őszi búza és a talaj 0,01 M CaCl2-oldható K-tartalma között, ami az egyéb tényezők nagyobb szerepére utal.A bemutatott eredmények igazolják, hogy a 0,01 M CaCl2-oldható N-, P- és Kfrakciók alkalmasak a tápanyaghiány és -felesleg jellemzésére. Egyben igazolják, hogy az eltérő ökológiai viszonyok között nagyobb terméskülönbségek jöhetnek létre, mint a kezelések hatására. A környezetkímélő tápanyag-gazdálkodás megköveteli a tápanyagok eltérő érvényesülésének figyelembevételét.A termésadatok átengedéséért köszönet az OMTK Hálózati Tanács elnökének, titkárának, és valamennyi kísérletfelelősnek.


Sign in / Sign up

Export Citation Format

Share Document