The differing impact of air stagnation on near-surface ozone across Europe

Author(s):  
José M. Garrido-Pérez ◽  
Carlos Ordóñez ◽  
Ricardo García-Herrera ◽  
Jordan L. Schnell

<p>Daily maximum temperature is known to be the meteorological variable that mostly controls the afternoon near-surface ozone concentrations during summer. Air stagnation situations, characterised by stable weather conditions and poor ventilation, also lead to the accumulation of pollutants and regional ozone production close to the surface. This work evaluates the joint effect of daily maximum temperature and a simplified air stagnation index on surface ozone observations in eight regions of Europe during summer 1998-2015.</p><p>As expected, the correlations of MDA8 O<sub>3</sub> (maximum daily 8-h running average ozone) with temperature are higher than with stagnation for most regions. Nevertheless, stagnation can also be considered as a good predictor of ozone, especially in the regions of central/southern Europe, where the correlation coefficients between MDA8 O<sub>3</sub> and the percentage of stagnant area are within the range 0.50–0.70. MDA8 O<sub>3</sub> consistently increases over central/southern Europe under stagnant conditions, but this is not always the case in the north. Under non-stagnant conditions and daily maximum temperatures within 20-25 ºC (typical temperatures of fair weather conditions that allow photochemical production), northern Europe is affected by southerly advection that often brings aged air masses from more polluted areas, increasing the MDA8 O<sub>3</sub> mixing ratios.</p><p>We have also found that the ozone diurnal cycles in the central/southern regions exhibit large amplitudes, with above-average daytime and below-average night-time concentrations, when stagnation occurs. Stagnant nights are often associated with stable shallow planetary boundary layer and, presumably, enhanced dry deposition and chemical destruction of ozone. After sunrise, mixing with air from air from the residual layer, accumulation of ozone and precursors, and photochemical production seem to be the main mechanisms involved in the build-up of daytime ozone.</p><p>According to previous studies, some of the central/southern European regions where stagnation has a clear impact on ozone have undergone significant upward trends in air stagnation in the past and are also likely to experience increases in the future. However, our study has identified other regions with unclear responses of summer ozone to the occurrence of stagnation. This indicates that climate model projections of increases in stagnation should not directly be translated into enhanced summer ozone pollution if the sensitivity of this pollutant to stagnation has not been proved for a particular region.</p>

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Nana Zhao ◽  
Songjun Han ◽  
Di Xu ◽  
Jiandong Wang ◽  
Hongjing Yu

The effects of agricultural development on observed changes in near-surface atmospheric temperature and moisture from 1960 to 2014 over Northeast China are evaluated using data from 109 meteorological stations. Cultivated land fraction (CF) within a 3 km radius of the meteorological station is used as a quantitative indicator of agricultural intensity. Stations with large CFs experience a less significant increase in air temperature, especially in daily maximum temperature (Tmax) and a more rapid increase in vapor pressure (ea) and relative humidity (RH) than stations with small CFs, especially during the main growing season (from May to September). Compared with the reference station group withCF<0.2, cooling effects during May to September in terms of daily mean, maximum, and minimum temperature by −0.067°C, −0.081°C, and −0.069°C per decade and wetting effects of May to September regardingeaby 0.075 hPa and RH by 0.56% per decade exist for the station group withCF>0.5. The cooling and wetting effects can be attributed to the agricultural development and thus should be considered when analyzing the near-surface atmospheric temperature and moisture records in Northeast China.


2016 ◽  
Vol 55 (3) ◽  
pp. 811-826 ◽  
Author(s):  
John R. Christy ◽  
Richard T. McNider

AbstractThree time series of average summer [June–August (JJA)] daily maximum temperature (TMax) are developed for three interior regions of Alabama from stations with varying periods of record and unknown inhomogeneities. The time frame is 1883–2014. Inhomogeneities for each station’s time series are determined from pairwise comparisons with no use of station metadata other than location. The time series for the three adjoining regions are constructed separately and are then combined as a whole assuming trends over 132 yr will have little spatial variation either intraregionally or interregionally for these spatial scales. Varying the parameters of the construction methodology creates 333 time series with a central trend value based on the largest group of stations of −0.07°C decade−1 with a best-guess estimate of measurement uncertainty from −0.12° to −0.02°C decade−1. This best-guess result is insignificantly different (0.01°C decade−1) from a similar regional calculation using NOAA’s divisional dataset based on daily data from the Global Historical Climatology Network (nClimDiv) beginning in 1895. Summer TMax is a better proxy, when compared with daily minimum temperature and thus daily average temperature, for the deeper tropospheric temperature (where the enhanced greenhouse signal is maximized) as a result of afternoon convective mixing. Thus, TMax more closely represents a critical climate parameter: atmospheric heat content. Comparison between JJA TMax and deep tropospheric temperature anomalies indicates modest agreement (r2 = 0.51) for interior Alabama while agreement for the conterminous United States as given by TMax from the nClimDiv dataset is much better (r2 = 0.86). Seventy-seven CMIP5 climate model runs are examined for Alabama and indicate no skill at replicating long-term temperature and precipitation changes since 1895.


2015 ◽  
Vol 16 (6) ◽  
pp. 2421-2442 ◽  
Author(s):  
David W. Pierce ◽  
Daniel R. Cayan ◽  
Edwin P. Maurer ◽  
John T. Abatzoglou ◽  
Katherine C. Hegewisch

Abstract Global climate model (GCM) output typically needs to be bias corrected before it can be used for climate change impact studies. Three existing bias correction methods, and a new one developed here, are applied to daily maximum temperature and precipitation from 21 GCMs to investigate how different methods alter the climate change signal of the GCM. The quantile mapping (QM) and cumulative distribution function transform (CDF-t) bias correction methods can significantly alter the GCM’s mean climate change signal, with differences of up to 2°C and 30% points for monthly mean temperature and precipitation, respectively. Equidistant quantile matching (EDCDFm) bias correction preserves GCM changes in mean daily maximum temperature but not precipitation. An extension to EDCDFm termed PresRat is introduced, which generally preserves the GCM changes in mean precipitation. Another problem is that GCMs can have difficulty simulating variance as a function of frequency. To address this, a frequency-dependent bias correction method is introduced that is twice as effective as standard bias correction in reducing errors in the models’ simulation of variance as a function of frequency, and it does so without making any locations worse, unlike standard bias correction. Last, a preconditioning technique is introduced that improves the simulation of the annual cycle while still allowing the bias correction to take account of an entire season’s values at once.


2012 ◽  
Vol 12 (20) ◽  
pp. 9441-9458 ◽  
Author(s):  
A. M. M. Manders ◽  
E. van Meijgaard ◽  
A. C. Mues ◽  
R. Kranenburg ◽  
L. H. van Ulft ◽  
...  

Abstract. Climate change may have an impact on air quality (ozone, particulate matter) due to the strong dependency of air quality on meteorology. The effect is often studied using a global climate model (GCM) to produce meteorological fields that are subsequently used by chemical transport models. However, climate models themselves are subject to large uncertainties and fail to reproduce the present-day climate adequately. The present study illustrates the impact of these uncertainties on air quality. To this end, output from the SRES-A1B constraint transient runs with two GCMs, i.e. ECHAM5 and MIROC-hires, has been dynamically downscaled with the regional climate model RACMO2 and used to force a constant emission run with the chemistry transport model LOTOS-EUROS in a one-way coupled run covering the period 1970–2060. Results from the two climate simulations have been compared with a RACMO2-LOTOS-EUROS (RLE) simulation forced by the ERA-Interim reanalysis for the period 1989–2009. Both RLE_ECHAM and RLE_MIROC showed considerable deviations from RLE_ERA for daily maximum temperature, precipitation and wind speed. Moreover, sign and magnitude of these deviations depended on the region. The differences in average present-day concentrations between the simulations were equal to (RLE_MIROC) or even larger than (RLE_ECHAM) the differences in concentrations between present-day and future climate (2041–2060). The climate simulations agreed on a future increase in average summer ozone daily maximum concentrations of 5–10 μg m−3 in parts of Southern Europe and a smaller increase in Western and Central Europe. Annual average PM10 concentrations increased 0.5–1.0 μg m−3 in North-West Europe and the Po Valley, but these numbers are rather uncertain: overall, changes for PM10 were small, both positive and negative changes were found, and for many locations the two climate runs did not agree on the sign of the change. This illustrates that results from individual climate runs can at best indicate tendencies and should therefore be interpreted with great care.


2012 ◽  
Vol 12 (5) ◽  
pp. 12245-12285 ◽  
Author(s):  
A. M. M. Manders ◽  
E. van Meijgaard ◽  
A. C. Mues ◽  
R. Kranenburg ◽  
L. H. van Ulft ◽  
...  

Abstract. Climate change may have an impact on air quality (ozone, particulate matter) due to the strong dependency of air quality on meteorology. The effect is often studied using a global climate model (GCM) to produce meteorological fields that are subsequently used by chemical transport models. However, climate models themselves are subject to large uncertainties and fail to adequately reproduce the present-day climate. The present study illustrates the impact of this uncertainty on air quality. To this end, output from the SRES-A1B constraint transient runs with two GCMs, i.e. ECHAM5 and MIROC-hires, has been dynamically downscaled with the regional climate model RACMO2 and used to force a constant emission run with the chemistry transport model LOTOS-EUROS in a one-way coupled run covering the period 1970–2060. Results from the two climate simulations have been compared with a RACMO2-LOTOS-EUROS (RLE) simulation forced by the ERA-Interim reanalysis for the period 1989–2009. Both RLE_ECHAM and RLE_MIROC showed considerable deviations from RLE_ERA in daily maximum temperature, precipitation and wind speed. Moreover, sign and magnitude of these deviations depended on the region. Differences in average concentrations for the present-day simulations were found of equal to (RLE_MIROC) or even larger than (RLE_ECHAM) the differences in concentration between present-day and future climate (2041–2060). The climate simulations agreed on a future increase in average summer ozone daily maximum concentrations (5–10 μg m−3) in parts of Southern Europe and a smaller increase in Western and Central Europe. Annual average PM10 concentrations increased (0.5–1.0 μg m−3) in North-West Europe and the Po Valley, but these numbers are rather uncertain. Overall, changes for PM10 were small, both positive and negative changes were found, and for many locations the two runs did not agree on the sign of the change. The approach taken here illustrates that results from individual climate runs can at best indicate tendencies and should therefore be interpreted with great care.


2013 ◽  
Vol 13 (11) ◽  
pp. 28511-28560 ◽  
Author(s):  
S. E. Pusede ◽  
D. R. Gentner ◽  
P. J. Wooldridge ◽  
E. C. Browne ◽  
A. W. Rollins ◽  
...  

Abstract. The San Joaquin Valley (SJV) experiences some of the worst ozone air quality in the US, frequently exceeding the California 8 h standard of 70.4 ppb. To improve our understanding of trends in the number of ozone violations in the SJV, we analyze observed relationships between organic reactivity, nitrogen oxides (NOx), and daily maximum temperature in the southern SJV using measurements made as part of California at the Nexus of Air Quality and Climate Change in 2010 (CalNex-SJV). We find the daytime speciated organic reactivity with respect to OH during CalNex-SJV has a temperature-independent portion with molecules typically associated with motor vehicles being the major component. At high temperatures, characteristic of days with high ozone, the largest portion of the total organic reactivity increases exponentially with temperature and is dominated by small, oxygenated organics and molecules that are unidentified. We use this simple temperature classification to consider changes in organic emissions over the last and next decade. With the CalNex-SJV observations as constraints, we examine the sensitivity of ozone production (PO3) to future NOx and organic reactivity controls. We find that PO3 is NOx-limited at all temperatures on weekends and on weekdays when daily maximum temperatures are greater than 29 °C. As a~consequence, NOx reductions are the most effective control option for reducing the frequency of future ozone violations in the southern SJV.


2014 ◽  
Vol 14 (7) ◽  
pp. 3373-3395 ◽  
Author(s):  
S. E. Pusede ◽  
D. R. Gentner ◽  
P. J. Wooldridge ◽  
E. C. Browne ◽  
A. W. Rollins ◽  
...  

Abstract. The San Joaquin Valley (SJV) experiences some of the worst ozone air quality in the US, frequently exceeding the California 8 h standard of 70.4 ppb. To improve our understanding of trends in the number of ozone violations in the SJV, we analyze observed relationships between organic reactivity, nitrogen oxides (NOx), and daily maximum temperature in the southern SJV using measurements made as part of California at the Nexus of Air Quality and Climate Change in 2010 (CalNex-SJV). We find the daytime speciated organic reactivity with respect to OH during CalNex-SJV has a temperature-independent portion with molecules typically associated with motor vehicles being the major component. At high temperatures, characteristic of days with high ozone, the largest portion of the total organic reactivity increases exponentially with temperature and is dominated by small, oxygenated organics and molecules that are unidentified. We use this simple temperature classification to consider changes in organic emissions over the last and next decade. With the CalNex-SJV observations as constraints, we examine the sensitivity of ozone production (PO3) to future NOx and organic reactivity controls. We find that PO3 is NOx-limited at all temperatures on weekends and on weekdays when daily maximum temperatures are greater than 29 °C. As a consequence, NOx reductions are the most effective control option for reducing the frequency of future ozone violations in the southern SJV.


2014 ◽  
Vol 32 (3) ◽  
pp. 383
Author(s):  
Abel Antônio Silva

ABSTRACT. Surface ozone plays a key role in the photochemistry of the low troposphere being associated with health and environmental problems. It is formed froma pool of reactions involving natural and anthropogenic pollutants, solar radiation, and the meteorological condition. In this study, 12-months of recent measurementsof surface ozone concentration (SOC) are presented for an urban tropical site (19.92◦S, 43.94◦W, 858 m asl, 331 km2) in Brazil. An analysis of the SOC dependenceon the meteorological conditions (cloud cover, wind direction and speed, number of rainy days, precipitation, humidity, and daily maximum temperature) is introduced.The daily maxima of the one-hour averaged data of SOC (1-h SOC) ranged from 8.7 to 96.1 parts-per-billion by volume (ppbv) and averaged 38.1 ± 13.7 ppbv (1σ),while the maxima of the monthly averages of the 1-h SOC varied from 24.5 ±8.8 ppbv in early fall to 46.7± 9.3 ppbv in late winter. Monthly averages of 1-h SOC andhumidity showed fair linearity among the meteorological parameters investigated. In addition, the cloud cover in summer seems to affect SOC the most.Keywords: ozone, clouds, meteorology.RESUMO. O ozônio de superfície desempenha um importante papel na fotoquímica da baixa troposfera, estando associado a questões ambientais e de saúde. Ele é formado a partir de um grupo de reações envolvendo fontes naturais e antropogênicas de poluentes, radiação solar e condições meteorológicas. Neste trabalho, 12 meses de medidas recentes da concentração de ozônio de superfície (COS) são apresentadas para uma localidade urbana tropical (19,92◦S, 43,94◦O, 858 m anm, 331 km2) no Brasil. Uma análise da dependência da COS com as condições meteorológicas (cobertura de nuvens, direção e velocidade dos ventos, número de dias chuvosos, precipitação, umidade e temperatura máxima diária) é introduzida. As máximas diárias da média horária de COS (1-h COS) variaram de 8,7 a 96,1 partes por bilhão em volume (ppbv) com média de 38,1±13,7 ppbv (1σ), enquanto as máximas das médias mensais de 1-h COS variaram de 24,5±8,8 ppbv no início do outono a 46,7±9,3 ppbv no final da primavera. As médias mensais de 1-h COS e umidade apresentaram uma linearidade razoável dentre os parâmetros meteorológicos investigados. Além disso, a cobertura de nuvens no verão parece ter afetado de forma mais intensa a COS.Palavras-chave: ozônio, nuvens, meteorologia.


Atmosphere ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 656
Author(s):  
Francisco Navarro-Serrano ◽  
Juan Ignacio López-Moreno ◽  
Cesar Azorin-Molina ◽  
Esteban Alonso-González ◽  
Marina Aznarez-Balta ◽  
...  

Air temperature changes as a function of elevation were analyzed in a valley of the Spanish Pyrenees. We analyzed insolation, topography and meteorological conditions in order to understand how complex topoclimatic environments develop. Clustering techniques were used to define vertical patterns of air temperature covering more than 1000 m of vertical elevation change. Ten locations from the bottom of the valley to the summits were monitored from September 2016 to June 2019. The results show that (i) night-time lapse rates were between −4 and −2 °C km−1, while in the daytime they were from −6 to −4 °C km−1, due to temperature inversions and topography. Daily maximum temperature lapse rates were steeper from March to July, and daily minimum temperatures were weaker from June to August, and in December. (ii) Different insolation exposure within and between the two analyzed slopes strongly influenced diurnal air temperatures, creating deviations from the general lapse rates. (iii) Usually, two cluster patterns were found (i.e., weak and steep), which were associated with stable and unstable weather conditions, respectively, in addition to high-low atmospheric pressure and low-high relative humidity. The results will have direct applications in disciplines that depend on air temperature estimations (e.g., snow studies, water resources and sky tourism, among others).


2014 ◽  
Vol 83 (4) ◽  
pp. 269-280
Author(s):  
László Nowinszky ◽  
Ottó Kiss ◽  
János Puskás

ABSTRACT The study deals with the effect of weather conditions on the light trap catch of 2 caddisflies (Trichoptera) species: Hydropsyche bulgaromanorum and Setodes punctatus. We found that the light trap catch of both species increased when the daily maximum temperature, minimum and average values of temperature was higher. The results can be written down with second- or third-degree polynomials. The fluctuation in temperature had no clear influence on the catch. The hydrothermal quotient has a strong influence on the catch of both species. Precipitation has no significant influence on the catch of the tested species.


Sign in / Sign up

Export Citation Format

Share Document