Cross-isentropic mixing: A DEEPWAVE case study

Author(s):  
Hans-Christoph Lachnitt ◽  
Peter Hoor ◽  
Daniel Kunkel ◽  
Stafan Hofmann ◽  
Martina Bramberger ◽  
...  

<p>The tropopause acts as a transport barrier between the upper troposphere and the lower stratosphere. Non-conservative (i.e. PV changing) processes are required to overcome this barrier. Orographically generated gravity waves (i.e. mountain waves) can potentially lead to cross-isentropic fluxes of trace gases via the generation of turbulence. Thus they may alter the isentropic gradient of these trace species across the tropopause.<br>The specific goal of this study is to identify cross-isentropic mixing processes at the tropopause based on the distribution of trace gases (i.e. tracer-tracer correlations). Based on airborne in-situ trace gas measurements of CO and N<sub>2</sub>O during the DEEPWAVE (Deep Propagating Gravity Wave Experiment) campaign in July 2014 we identified mixing regions above the Southern Alps during periods of gravity wave activity. These in-situ data show that the composition of the air above the Southern Alps change from the upstream to the leeward side of the mountains indicating cross isentropic mixing of trace gases in the region of gravity wave activity.<br>We complement our analysis of the measurement data with high resolution operational analysis data from the ECMWF (European Centre for Medium-Range Weather Forecasts). Furthermore, using potential vorticity and stability parameters.<br>Using 3D wind fields, data form Graphical Turbulence Guidance (GTG) system and in-situ measurements of the vertical wind we identify occurrence of turbulence in the region of mixing events. Using wavelet analysis, we could identify the spatial and temporal scales of local trace gas fluxes. We also give estimates of cross-isentropic flux, i.e. we want to quantify the mixing in terms of exchange.</p>

2020 ◽  
Author(s):  
Marianna Linz ◽  
Benjamin Birner ◽  
Alan Plumb ◽  
Edwin Gerber ◽  
Florian Haenel ◽  
...  

<p>Age of air is an idealized tracer often used as a measure of the stratospheric circulation. We will show how to quantitatively relate age to the diabatic circulation and the adiabatic mixing. As it is an idealized tracer, age cannot be measured itself and must be inferred from other tracers. Typically, the two primary trace gases used are sulfur hexafluoride and carbon dioxide. Other tracers have a compact relationship with age, however, and can also be used to calculate age. We will discuss a range of tracer measurements from both satellites and in situ, including sulfur hexafluoride, carbon dioxide, nitrous oxide, methane, and the ratio of argon to nitrogen. We will compare the age derived from these different species, including different calculation methods and caveats, and compare with modeled ideal age and trace gas concentrations. We conclude by showing the strength of the diabatic circulation and the adiabatic mixing calculated from these trace gas calculations.</p>


2006 ◽  
Vol 6 (1) ◽  
pp. 109-125 ◽  
Author(s):  
M. Krebsbach ◽  
C. Schiller ◽  
D. Brunner ◽  
G. Günther ◽  
M. I. Hegglin ◽  
...  

Abstract. Airborne high resolution in situ measurements of a large set of trace gases including ozone (O3) and total water (H2O) in the upper troposphere and the lowermost stratosphere (UT/LMS) have been performed above Europe within the SPURT project. SPURT provides an extensive data coverage of the UT/LMS in each season within the time period between November 2001 and July 2003. In the LMS a distinct spring maximum and autumn minimum is observed in O3, whereas its annual cycle in the UT is shifted by 2–3 months later towards the end of the year. The more variable H2O measurements reveal a maximum during summer and a minimum during autumn/winter with no phase shift between the two atmospheric compartments. For a comprehensive insight into trace gas composition and variability in the UT/LMS several statistical methods are applied using chemical, thermal and dynamical vertical coordinates. In particular, 2-dimensional probability distribution functions serve as a tool to transform localised aircraft data to a more comprehensive view of the probed atmospheric region. It appears that both trace gases, O3 and H2O, reveal the most compact arrangement and are best correlated in the view of potential vorticity (PV) and distance to the local tropopause, indicating an advanced mixing state on these surfaces. Thus, strong gradients of PV seem to act as a transport barrier both in the vertical and the horizontal direction. The alignment of trace gas isopleths reflects the existence of a year-round extra-tropical tropopause transition layer. The SPURT measurements reveal that this layer is mainly affected by stratospheric air during winter/spring and by tropospheric air during autumn/summer. Normalised mixing entropy values for O3 and H2O in the LMS appear to be maximal during spring and summer, respectively, indicating highest variability of these trace gases during the respective seasons.


2005 ◽  
Vol 5 (4) ◽  
pp. 7247-7282
Author(s):  
M. Krebsbach ◽  
C. Schiller ◽  
D. Brunner ◽  
G. Günther ◽  
M. I. Hegglin ◽  
...  

Abstract. Airborne high resolution in situ measurements of a large set of trace gases including ozone (O3) and total water (H2O) in the upper troposphere and the lowermost stratosphere (UT/LMS) have been performed above Europe within the SPURT project. With its innovative campaign concept, SPURT provides an extensive data coverage of the UT/LMS in each season within the time period between November 2001 and July 2003. Ozone volume mixing ratios in the LMS show a distinct spring maximum and autumn minimum, whereas the O3 seasonal cycle in the UT is shifted by 2 to 3 month later towards the end of the year. The more variable H2O measurements reveal a maximum during spring/summer and a minimum during autumn/winter with no phase shift between the two atmospheric compartments. For a comprehensive insight into trace gas composition and variability in the UT/LMS several statistical methods are applied using chemical, thermal and dynamical vertical coordinates. In particular, 2-dimensional probability distribution functions serve as a tool to transform localised aircraft data to a more comprehensive view of the probed atmospheric region. It appears that both trace gases, O3 and H2O, reveal the most compact arrangement and are best correlated in the view of potential vorticity (PV) and distance to the local tropopause, indicating an advanced mixing state on these surfaces. Thus, strong gradients of PV seem to act as a transport barrier both in the vertical and the horizontal direction. The alignment of trace gas isopleths reflects the existence of a year-round extra-tropical tropopause transition layer. The SPURT measurements reveal that this layer is mainly affected by stratospheric air during winter/spring and by tropospheric air during autumn/summer. Mixing entropy values for O3 and H2O in the LMS appear to be maximal during spring and summer, respectively, indicating highest variability of these trace gases during the respective seasons.


2021 ◽  
Author(s):  
Clara M. Nussbaumer ◽  
John N. Crowley ◽  
Jan Schuladen ◽  
Jonathan Williams ◽  
Sascha Hafermann ◽  
...  

Abstract. Various atmospheric sources and sinks regulate the abundance of tropospheric formaldehyde (HCHO) which is an important trace gas impacting the HOx (≡ HO2 + OH) budget and the concentration of ozone (O3). In this study, we present the formation and destruction terms of ambient HCHO and O3 calculated from in-situ observations of various atmospheric trace gases measured at three different sites across Europe during summer time. These include a coastal site in Cyprus in the scope of the Cyprus Photochemistry Experiment (CYPHEX) in 2014, a mountain site in Southern Germany as part of the Hohenpeißenberg Photochemistry Experiment (HOPE) in 2012 and a forested site in Finland where measurements were performed during the Hyytiälä United Measurements of Photochemistry and Particles (HUMPPA) campaign in 2010. We show that at all three sites formaldehyde production from the OH oxidation of methane (CH4), acetaldehyde (CH3CHO), isoprene (C5H8) and methanol (CH3OH) can almost completely balance the observed loss via photolysis, OH oxidation and dry deposition. Ozone chemistry is clearly controlled by nitrogen oxides (NOx ≡ NO + NO2) that includes O3 production from NO2 photolysis and O3 loss via the reaction with NO. Finally, we use the HCHO budget calculations to determine whether net ozone production is limited by the availability of VOCs (VOC limited regime) or NOx (NOx limited regime). At the mountain site in Germany O3 production is VOC limited, whereas it is NOx limited at the coastal site in Cyprus. The forested site in Finland is in the transition regime.


2022 ◽  
Vol 19 (1) ◽  
pp. 165-185
Author(s):  
Juliana Gil-Loaiza ◽  
Joseph R. Roscioli ◽  
Joanne H. Shorter ◽  
Till H. M. Volkmann ◽  
Wei-Ren Ng ◽  
...  

Abstract. Gas concentrations and isotopic signatures can unveil microbial metabolisms and their responses to environmental changes in soil. Currently, few methods measure in situ soil trace gases such as the products of nitrogen and carbon cycling or volatile organic compounds (VOCs) that constrain microbial biochemical processes like nitrification, methanogenesis, respiration, and microbial communication. Versatile trace gas sampling systems that integrate soil probes with sensitive trace gas analyzers could fill this gap with in situ soil gas measurements that resolve spatial (centimeters) and temporal (minutes) patterns. We developed a system that integrates new porous and hydrophobic sintered polytetrafluoroethylene (sPTFE) diffusive soil gas probes that non-disruptively collect soil gas samples with a transfer system to direct gas from multiple probes to one or more central gas analyzer(s) such as laser and mass spectrometers. Here, we demonstrate the feasibility and versatility of this automated multiprobe system for soil gas measurements of isotopic ratios of nitrous oxide (δ18O, δ15N, and the 15N site preference of N2O), methane, carbon dioxide (δ13C), and VOCs. First, we used an inert silica matrix to challenge probe measurements under controlled gas conditions. By changing and controlling system flow parameters, including the probe flow rate, we optimized recovery of representative soil gas samples while reducing sampling artifacts on subsurface concentrations. Second, we used this system to provide a real-time window into the impact of environmental manipulation of irrigation and soil redox conditions on in situ N2O and VOC concentrations. Moreover, to reveal the dynamics in the stable isotope ratios of N2O (i.e., 14N14N16O, 14N15N16O, 15N14N16O, and 14N14N18O), we developed a new high-precision laser spectrometer with a reduced sample volume demand. Our integrated system – a tunable infrared laser direct absorption spectrometry (TILDAS) in parallel with Vocus proton transfer reaction mass spectrometry (PTR-MS), in line with sPTFE soil gas probes – successfully quantified isotopic signatures for N2O, CO2, and VOCs in real time as responses to changes in the dry–wetting cycle and redox conditions. Broadening the collection of trace gases that can be monitored in the subsurface is critical for monitoring biogeochemical cycles, ecosystem health, and management practices at scales relevant to the soil system.


2017 ◽  
Vol 17 (4) ◽  
pp. 2775-2794 ◽  
Author(s):  
Johannes Eckstein ◽  
Roland Ruhnke ◽  
Andreas Zahn ◽  
Marco Neumaier ◽  
Ole Kirner ◽  
...  

Abstract. Measurement data from the long-term passenger aircraft project IAGOS-CARIBIC are often used to derive climatologies of trace gases in the upper troposphere and lower stratosphere (UTLS). We investigate to what extent such climatologies are representative of the true state of the atmosphere. Climatologies are considered relative to the tropopause in mid-latitudes (35 to 75° N) for trace gases with different atmospheric lifetimes. Using the chemistry–climate model EMAC, we sample the modeled trace gases along CARIBIC flight tracks. Representativeness is then assessed by comparing the CARIBIC sampled model data to the full climatological model state. Three statistical methods are applied for the investigation of representativeness: the Kolmogorov–Smirnov test and two scores based on the variability and relative differences. Two requirements for any score describing representativeness are essential: representativeness is expected to increase (i) with the number of samples and (ii) with decreasing variability of the species considered. Based on these two requirements, we investigate the suitability of the different statistical measures for investigating representativeness. The Kolmogorov–Smirnov test is very strict and does not identify any trace-gas climatology as representative – not even of long-lived trace gases. In contrast, the two scores based on either variability or relative differences show the expected behavior and thus appear applicable for investigating representativeness. For the final analysis of climatological representativeness, we use the relative difference score and calculate a representativeness uncertainty for each trace gas in percent. In order to justify the transfer of conclusions about representativeness of individual trace gases from the model to measurements, we compare the trace gas variability between model and measurements. We find that the model reaches 50–100 % of the measurement variability. The tendency of the model to underestimate the variability is caused by the relatively coarse spatial and temporal model resolution. In conclusion, we provide representativeness uncertainties for several species for tropopause-referenced climatologies. Long-lived species like CO2 have low uncertainties ( ≤ 0.4 %), while shorter-lived species like O3 have larger uncertainties (10–15 %). Finally, we translate the representativeness score into a number of flights that are necessary to achieve a certain degree of representativeness. For example, increasing the number of flights from 334 to 1000 would reduce the uncertainty in CO to a mere 1 %, while the uncertainty for shorter-lived species like NO would drop from 80 to 10 %.


2018 ◽  
Author(s):  
Sören Johansson ◽  
Wolfgang Woiwode ◽  
Michael Höpfner ◽  
Felix Friedl-Vallon ◽  
Anne Kleinert ◽  
...  

Abstract. The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) was operated on board the German High Altitude and LOng range (HALO) research aircraft during the PGS (POLSTRACC/GW-LCYCLE/SALSA) aircraft campaigns in the Arctic winter 2015/2016. Research flights were conducted from 17 December 2015 until 18 March 2016 between 80° W–30° E longitude and 25° N–87° N latitude. From the GLORIA infrared limb emission measurements, two dimensional cross sections of temperature, HNO3, O3, ClONO2, H2O and CFC-12 are retrieved. During 15 scientific flights of the PGS campaigns the GLORIA instrument measured more than 15 000 atmospheric profiles at high spectral resolution. Dependent on flight altitude and tropospheric cloud cover, the profiles retrieved from the measurements typically range between 5 and 14 km, and vertical resolutions between 400 m and 1000 m are achieved. The estimated total (random and systematic) 1σ errors are in the range of 1 to 2 K for temperature and 10 % to 20 % relative error for the discussed trace gases. Comparisons to in-situ instruments deployed on board HALO have been performed. Over all flights of this campaign the median differences and median absolute deviations between in-situ and GLORIA observations are −0.75 K ± 0.88 K for temperature, −0.03 ppbv ± 0.85 ppbv for HNO3, −3.5 ppbv ± 116.8 ppbv for O3, −15.4 pptv ± 102.8 pptv for ClONO2, −0.13 ppmv ± 0.63 ppmv for H2O and −19.8 pptv ± 46.9 pptv for CFC-12. These differences are mainly within the expected performances of the cross-compared instruments. Events with stronger deviations are explained by atmospheric variability and different sampling characteristics of the instruments. Additionally comparisons of GLORIA HNO3 and O3 with measurements of the Aura Microwave Limb Sounder (MLS) instrument show highly consistent structures in trace gas distributions and illustrate the potential of the high spectral resolution limb-imaging GLORIA observations for resolving narrow mesoscale structures in the UTLS.


2012 ◽  
Vol 5 (5) ◽  
pp. 7243-7292 ◽  
Author(s):  
S. Baidar ◽  
H. Oetjen ◽  
S. Coburn ◽  
B. Dix ◽  
I. Ortega ◽  
...  

Abstract. The University of Colorado Airborne Multi Axis Differential Optical Absorption Spectroscopy (CU AMAX-DOAS) instrument uses solar stray light remote sensing to detect and quantify multiple trace gases, including nitrogen dioxide (NO2), glyoxal (CHOCHO), formaldehyde (HCHO), water vapor (H2O), nitrous acid (HONO), iodine monoxide (IO), bromine monoxide (BrO), and oxygen dimers (O4) at multiple wavelengths (360 nm, 477 nm, 577 nm and 632 nm) simultaneously, and sensitively in the open atmosphere. The instrument is unique, in that it presents the first systematic implementation of MAX-DOAS on research aircraft, i.e. (1) includes measurements of solar stray light photons from nadir, zenith, and multiple elevation angles forward and below the plane by the same spectrometer/detector system, and (2) features a motion compensation system that decouples the telescope field of view (FOV) from aircraft movements in real-time (< 0.35° accuracy). Sets of solar stray light spectra collected from nadir to zenith scans provide some vertical profile information within 2 km above and below the aircraft altitude, and the vertical column density (VCD) below the aircraft is measured in nadir view. Maximum information about vertical profiles is derived simultaneously for trace gas concentrations and aerosol extinction coefficients over similar spatial scales and with a vertical resolution of typically 250 m during aircraft ascent/descent. The instrument is described, and data from flights over California during the CalNex and CARES air quality field campaigns is presented. Horizontal distributions of NO2 VCDs (below the aircraft) maps are sampled with typically 1 km resolution, and show good agreement with two ground based CU MAX-DOAS instruments (slope 0.95 ± 0.09, R2 = 0.86). As a case study vertical profiles of NO2, CHOCHO, HCHO, and H2O mixing ratios and aerosol extinction coefficients, ε, at 477nm calculated from O4 measurements from a low approach at Brackett airfield inside the South Coast Air Basin (SCAB) are presented. These profiles contain ~ 12 degrees of freedom (DOF) over a 3.5 km altitude range, independent of signal-to-noise at which the trace gas is detected. The boundary layer NO2 concentration, and the integral aerosol extinction over height (aerosol optical depth, AOD) agrees well with nearby ground-based in-situ NO2 measurement, and AERONET station. The detection limits of NO2, CHOCHO, HCHO, ε360, ε477 from 30 s integration time spectra recorded forward of the plane are 5 ppt, 3 ppt, 100 ppt, 0.004 km−1, 0.002 km−1 in the free troposphere (FT), and 30 ppt, 16 ppt, 540 ppt, 0.012 km−1, 0.006 km−1 inside the boundary layer (BL), respectively. Mobile column observations of trace gases and aerosols are complimentary to in-situ observations, and help bridge the spatial scales probed by ground-based observations, satellites, and predicted by atmospheric models.


2021 ◽  
Vol 21 (24) ◽  
pp. 18413-18432
Author(s):  
Clara M. Nussbaumer ◽  
John N. Crowley ◽  
Jan Schuladen ◽  
Jonathan Williams ◽  
Sascha Hafermann ◽  
...  

Abstract. Various atmospheric sources and sinks regulate the abundance of tropospheric formaldehyde (HCHO), which is an important trace gas impacting the HOx (≡ HO2 + OH) budget and the concentration of ozone (O3). In this study, we present the formation and destruction terms of ambient HCHO and O3 calculated from in situ observations of various atmospheric trace gases measured at three different sites across Europe during summertime. These include a coastal site in Cyprus, in the scope of the Cyprus Photochemistry Experiment (CYPHEX) in 2014, a mountain site in southern Germany, as part of the Hohenpeißenberg Photochemistry Experiment (HOPE) in 2012, and a forested site in Finland, where measurements were performed during the Hyytiälä United Measurements of Photochemistry and Particles (HUMPPA) campaign in 2010. We show that, at all three sites, formaldehyde production from the OH oxidation of methane (CH4), acetaldehyde (CH3CHO), isoprene (C5H8) and methanol (CH3OH) can almost completely balance the observed loss via photolysis, OH oxidation and dry deposition. Ozone chemistry is clearly controlled by nitrogen oxides (NOx ≡ NO + NO2) that include O3 production from NO2 photolysis and O3 loss via the reaction with NO. Finally, we use the HCHO budget calculations to determine whether net ozone production is limited by the availability of VOCs (volatile organic compounds; VOC-limited regime) or NOx (NOx-limited regime). At the mountain site in Germany, O3 production is VOC limited, whereas it is NOx limited at the coastal site in Cyprus. The forested site in Finland is in the transition regime.


2016 ◽  
Author(s):  
Johannes Eckstein ◽  
Roland Ruhnke ◽  
Andreas Zahn ◽  
Marco Neumaier ◽  
Ole Kirner ◽  
...  

Abstract. Measurement data from the long-term passenger aircraft project IAGOS-CARIBIC is often used to derive trace gas climatologies. We investigate to what extent such derived climatologies can be assumed to be representative for the true state of the atmosphere. Using the chemistry-climate model EMAC we sample the modelled trace gases along CARIBIC flight tracks. Different trace gases are considered and climatologies relative to the mid-latitude tropopause are calculated. Representativeness can now be assessed by comparing the CARIBIC sampled model data to the true climatological model state. Three statistical methods are applied for this purpose: the Kolomogorov-Smirnov test, and scores based on the variability and relative differences. Generally, representativeness is expected to decrease with increasing variability and to increase with the number of available samples. Based on this assumption, we investigate the suitability of the different statistical measures for our problem. The Kolmogorov-Smirnov test seems too strict and does not identify any climatology as representative – not even long lived well observed trace gases. In contrast, the variability based scores pass the general requirements for representativeness formulated above. In addition, even the simplest metric (relative differences) seems applicable for investigating representativeness. Using the relative differences score we investigate the representativeness of a large number of different trace gases. For our final consideration we assume that the EMAC model is a reasonable representation of the real world and that representativeness in the model world can be translated to representativeness for CARIBIC measurements. This assumption is justified by comparing the model variability to the variability of CARIBIC measurements. Finally, we show how the representativeness score can be translated into a number of flights necessary to achieve a certain degree of representativeness.


Sign in / Sign up

Export Citation Format

Share Document