scholarly journals Geodiversity of proglacial areas and implications on abiotic ecosystem services

Author(s):  
Irene Maria Bollati ◽  
Cristina Viani ◽  
Anna Masseroli ◽  
Giovanni Mortara ◽  
Bruno Testa ◽  
...  

<p>Proglacial areas, defined as the areas left free from glaciers since the Little Ice Age, are open-air laboratories to study the effects of climate change on high mountain environments. Their different abiotic features (i.e. geodiversity) depend mainly on the bedrock characteristics, the type of glaciers acting in the areas and the morphometry of their hydrographic basins, which influence the geomorphic dynamics (i.e., geomorphodiversity). From this, it could derive a different response of glacier forefields to deglaciation and particular evolutionary trends. Hydrological elements and dynamics are particularly variable (i.e. hydrogeodiversity), especially in terms of proglacial lakes diversification, having effects down-valley, even far from the strict proglacial area, and also in term of potential natural hazards. Moreover, geodiversity of proglacial areas may have implications on other types of “diversity”. After the glacier retreat, glacier forefields are, in fact, characterized by soils development and vegetation settlement. In particular, soils characterized by different ages and by different degree of development coexist over short distances (i.e. pedodiversity), functioning also as a support for living organisms. Biotic components gradually colonize such areas, from the pioneer to the late-successional species, bringing varied species along the proglacial plains (i.e. biodiversity). All these aspects can be discussed in the perspective of the abiotic ecosystem services (i.e. regulating, supporting, provisioning, and cultural) provided by glacier forefields. Regulating services are related to both atmospheric and terrestrial processes, including natural hazard regulation. Supporting services deal mainly with habitat provision and soils development. Provisioning services include both material (freshwater, building materials) and immaterial (i.e. tourism) resources. Finally, cultural services, that are the most numerous, take into account, among the others, the spiritual and historical meaning, the geohistorical importance for the Earth Sciences development, the educational and geotourism-related opportunities, and the landscape benefit effects. Considering all these aspects, and the intense dynamics proglacial areas are affected by, which will be illustrated through examples mainly from the European Alps, it emerges the importance of a careful monitoring and management of such areas, hopefully through an even more holistic approach.</p>

2017 ◽  
Vol 56 (6) ◽  
pp. 1707-1729 ◽  
Author(s):  
Marlis Hofer ◽  
Johanna Nemec ◽  
Nicolas J. Cullen ◽  
Markus Weber

AbstractThis study explores the potential of different predictor strategies for improving the performance of regression-based downscaling approaches. The investigated local-scale target variables are precipitation, air temperature, wind speed, relative humidity, and global radiation, all at a daily time scale. Observations of these target variables are assessed from three sites in close proximity to mountain glaciers: 1) the Vernagtbach station in the European Alps, 2) the Artesonraju measuring site in the tropical South American Andes, and 3) the Mount Brewster measuring site in the Southern Alps of New Zealand. The large-scale dataset being evaluated is the ERA-Interim dataset. In the downscaling procedure, particular emphasis is put on developing efficient yet not overfit models from the limited information in the temporally short (typically a few years) observational records of the high mountain sites. For direct (univariate) predictors, optimum scale analysis turns out to be a powerful means to improve the forecast skill without the need to increase the downscaling model complexity. Yet the traditional (multivariate) predictor sets show generally higher skill than the direct predictors for all variables, sites, and days of the year. Only in the case of large sampling uncertainty (identified here to particularly affect observed precipitation) is the use of univariate predictor options justified. Overall, the authors find a range in forecast skill among the different predictor options applied in the literature up to 0.5 (where 0 indicates no skill, and 1 represents perfect skill). This highlights that a sophisticated predictor selection (as presented in this study) is essential in the development of realistic, local-scale scenarios by means of downscaling.


2021 ◽  
Author(s):  
Roberto Sergio Azzoni ◽  
Irene Bollati ◽  
Manuela Pelfini ◽  
Mehmet Akif Sarıkaya ◽  
Andrea Zerboni

<p>High mountain environments and especially proglacial systems, which are areas defined by subtracting modern glacier outlines from Little Ice Age (LIA) limits, are among the most dynamic geomorphic contexts on Earth. They are extremely sensitive to ongoing climate change and its consequences are especially intense – yet relatively poorly investigated – at middle-low latitudes, as in the case of the circum-Mediterranean mountainous contexts. This area (excluding the Alps) encompasses recently deglaciated ground from the borders of the Mediterranean Sea and comprises more than hundred ice bodies dramatically receding since their LIA extension. Most of these glaciers are completely disappeared leaving extensive proglacial areas, which differs from those described in the Alps for the timing and types of ongoing processes. Here, we present and discuss the unique characteristics of such dynamic proglacial contexts, focusing on recently deglaciated high mountain areas of Southeast Turkey that are affected by fast geomorphological evolution tuned by their specific climatic and geological settings. We compare two areas differing for climatic, structural, and lithological settings: i) the Mount Ararat/Ağrı Dağı (5137 m a.s.l.), a stratovolcano, and ii) the Cilo mountain range (up to 4116 m a.s.l.), characterized by a limestone bedrock. Since the LIA, the two areas underwent different trajectories of evolution and different rates of geomorphic processes. High-resolution satellite data from Pleiades and SPOT 6 platforms permit to investigate the overprint of specific local factors (volcanism, tectonic, and topography) on climate-driven surface evolution explains the specific evolution of each proglacial area.</p>


2021 ◽  
Vol 13 (11) ◽  
pp. 6051
Author(s):  
Uta Schirpke ◽  
Manuel Ebner ◽  
Hanna Pritsch ◽  
Veronika Fontana ◽  
Rainer Kurmayer

Mountain lakes are highly sensitive to global change, requiring sustainable management strategies that support crucial ecosystem services (ES). However, small mountain lakes are rarely in the focus of ES assessments, and indicators are potentially lacking. Therefore, this study aimed at comprehensively assessing key ES of 15 study lakes located in two regions in the European Alps. We involved local stakeholders and experts to identify important ES. We quantified eight ES in non-monetary terms, using 29 indicators based on limnological, spatial and socio-economic data. Finally, we evaluated ES in relation to the socio-ecological context of the study lakes. The most important ES included surface water for non-drinking purposes, maintaining populations and habitats, outdoor recreation, aesthetic value, entertainment and representation, scientific research, education as well as existence, option, or bequest value. Quantitative results indicate varying levels of ES across the study lakes. Based on 12 different socio-ecological variables, we identified four groups of lakes differing also in five ES. Maintaining populations and habitats, aesthetic value as well as existence, option or bequest value were rather independent from the socio-ecological context. Our findings contribute to a deeper understanding of ES of mountain lakes, also supporting the development of sustainable management strategies in mountain regions.


2021 ◽  
Vol 9 ◽  
Author(s):  
Cristina Vallino ◽  
Nigel Gilles Yoccoz ◽  
Antonio Rolando ◽  
Anne Delestrade

Methods and devices specifically created for remote animal surveys and monitoring are becoming increasingly popular and effective. However, remote devices are also widely used in our societies for different, not scientific, goals. Ski resorts in the European Alps, for instance, use webcams to share panoramic views and promote themselves in the industry of winter recreational activities. We tested preinstalled webcam effectiveness as a remote tool for eco-ethological studies. Our target species was the Alpine Chough Pyrrhocorax graculus, a social and opportunistic corvid species of high mountain environments that attends ski resorts to feed on scraps discarded by high elevation bars and restaurants. We studied the effect of the winter presence of tourists and weather conditions on flocking behaviour at ski resorts. We used flock size and time spent at the ski resort as response variables, and assessed how strongly they were related to the number of tourists and weather conditions. We analysed about 13,500 pictures taken at 10 min intervals at three ski resorts sites in the European Alps in France, Italy and Switzerland. The number of birds was very different among the three study sites. Flock size and time spent were related to the same environmental drivers, but with different effect sizes in the three areas. The daily maximum flock size and the time spent at ski resorts increased with the number of tourists and decreased with temperature at two sites out of three. We also found that the presence of fresh snow caused a decrease in the maximum flock size in all ski resorts. In conclusion, Alpine Choughs modulated their presence at the ski resorts according to human presence and weather conditions, but these responses were context-dependent. Preinstalled webcams, despite a few caveats, can therefore be successfully employed in eco-ethological research. Webcams around the world are increasing in number and represent therefore a large potential resource. If webcam companies could be engaged to make some slight adjustments, without compromising their goals, then this could offer a new way to collect eco-ethological data.


2019 ◽  
Vol 3 (1) ◽  
pp. 1-14
Author(s):  
Philip Brick ◽  
Kent Woodruff

This case explores the Methow Beaver Project (MBP), an ambitious experiment to restore beaver (Castor canadensis) to a high mountain watershed in Washington State, USA. The Pacific Northwest is already experiencing weather regimes consistent with longer term climate projections, which predict longer and drier summers and stronger and wetter winter storms. Ironically, this combination makes imperative more water storage in one of the most heavily dammed regions in the nation. Although the positive role that beaver can play in watershed enhancement has been well known for decades, no project has previously attempted to re-introduce beaver on a watershed scale with a rigorous monitoring protocol designed to document improved water storage and temperature conditions needed for human uses and aquatic species. While the MBP has demonstrated that beaver can be re-introduced on a watershed scale, it has been much more difficult to scientifically demonstrate positive changes in water retention and stream temperature, given hydrologic complexity, unprecedented fire and floods, and the fact that beaver are highly mobile. This case study can help environmental studies students and natural resource policy professionals think about the broader challenges of diffuse, ecosystem services approaches to climate adaptation. Beaver-produced watershed improvements will remain difficult to quantify and verify, and thus will likely remain less attractive to water planners than conventional storage dams. But as climate conditions put additional pressure on such infrastructure, it is worth considering how beaver might be employed to augment watershed storage capacity, even if this capacity is likely to remain at least in part inscrutable.


2020 ◽  
Vol 786 (11) ◽  
pp. 41-46
Author(s):  
V.V. STROKOVA ◽  
◽  
V.V. NELUBOVA ◽  
M.N. SIVALNEVA ◽  
M.D. RYKUNOVA ◽  
...  

The dynamic development of urbanization contributes to an increase in emissions of industrial waste, which is the cause dysfunction of the ecosystem balance and leads to the development of biological corrosion on building materials associated with the products of the vital activity of microorganisms. In this regard, it is necessary to assess the resistance of composites to predict the durability of building structures under conditions of biological influence of microorganisms. Binder systems of various compositions were studied: cementless nanostructured binders (NB) based on quartz sand and granodiorite, gypsum, Portland cement and alumina cement. The toxicity of binders was assessed by biotesting on living organisms – cladocerans Daphnia Magna – according to the criteria of the intensity of their growth and viability. As a result, the high environmental safety of NB is substantiated, and the ranking of the studied binders according to the degree of increase in their toxicity to test objects is presented. Fungal resistance was assessed by the ability of molds for growing and reproduction on the studied samples. It was found that the most active in terms of the development of binders were representatives of the genus Aspergillus, the intensity of growing of which in all variants did not decrease below 3 points. Gypsum and NB were especially vulnerable, where the degree of fouling repeatedly reached 5 points. Even the initially biostable cement, after the aging process, lost its stability at different extent. The obtained results indicate the need to increase the resistance of composites for various purposes under conditions of biocorrosion at the stage of design and updating of regulatory documents, including tests for fungal resistance in the list of mandatory.


2011 ◽  
Vol 38 (4) ◽  
pp. 485-496 ◽  
Author(s):  
KIMBERLEY WARREN-RHODES ◽  
ANNE-MAREE SCHWARZ ◽  
LINDA NG BOYLE ◽  
JOELLE ALBERT ◽  
STEPHEN SUTI AGALO ◽  
...  

SUMMARYMangroves are an imperilled biome whose protection and restoration through payments for ecosystem services (PES) can contribute to improved livelihoods, climate mitigation and adaptation. Interviews with resource users in three Solomon Islands villages suggest a strong reliance upon mangrove goods for subsistence and cash, particularly for firewood, food and building materials. Village-derived economic data indicates a minimum annual subsistence value from mangroves of US$ 345–1501 per household. Fish and nursery habitat and storm protection were widely recognized and highly valued mangrove ecosystem services. All villagers agreed that mangroves were under threat, with firewood overharvesting considered the primary cause. Multivariate analyses revealed village affiliation and religious denomination as the most important factors determining the use and importance of mangrove goods. These factors, together with gender, affected users’ awareness of ecosystem services. The importance placed on mangrove services did not differ significantly by village, religious denomination, gender, age, income, education or occupation. Mangrove ecosystem surveys are useful as tools for raising community awareness and input prior to design of PES systems. Land tenure and marine property rights, and how this complexity may both complicate and facilitate potential carbon credit programmes in the Pacific, are discussed.


2021 ◽  
Author(s):  
Sandra Gorsic ◽  
Alberto Muñoz-Torrero Manchado ◽  
Jérôme Lopez-Saez ◽  
Simon K. Allen ◽  
Juan A. Ballesteros-Canovas ◽  
...  

<p>With the substantial glacier mass reduction projected by the end of the century, the formation and rise of periglacial lakes has to be expected. Even though these changes often occur in remote areas, they can nevertheless have catastrophic impacts on populations and infrastructure through processes such as glacial lake outburst floods (GLOF). GLOFs are the result of complex geomorphic changes and subject to various timescales, thus urging the need for a multidimensional approach. The present study combines two approaches to analyze natural hazards in the secluded San Rafael National Park in Chilean Patagonia (North Patagonian Icefield). The Grosse glacier outlet was chosen after interpreting satellite imagery and historical pictures showing a historical emptying of a lateral lake, which was also supported by local testimonies. Dendrogeomorphology was primarily used with an automatic detection approach to identify possible dates of occurrence of past GLOFs at the Grosse outlet. A total of 105 disturbed Nothofagus trees were sampled highlighting 6 event years between 1958 and 2011. The second method aimed at complementing the tree-ring-based findings with UAV imagery acquired during fieldwork and the mapping of geomorphic evidence of past GLOFs. Huge boulders and deposits are one of the signs recognized as remnants of past lake outbursts and were thus used to differentiate small, rainfall-induced floods from high magnitude events. More precisely, through an object-based strategy, we mapped deposits and extrapolated a theoretical flow orientation. Whereas the first method allowed to select dates of potential events, the second facilitated identification and mapping of the spatial extent of past high-energy events. Analysis of imagery also allowed detection of the occurrence of a 200-m wide breach in the frontal moraine as well as the vanishing of a lateral lake estimated to be 1.8 × 10<sup>6 </sup>m<sup>2</sup> in the 1950s, which we date to 1958 using tree-ring records. When used together the two approaches can represent a valuable contribution to historical records and help future assessments of natural hazard at Grosse glacier, but also in other high-mountain environments.</p>


2021 ◽  
Vol 4 (2) ◽  
Author(s):  
Jacqueline Eng ◽  
Mark Aldenderfer

Anthropological research in the high-elevation regions of northwestern Nepal offers insights into the populationhistory of the Himalayan arc through a multi- and interdisciplinary approach that includes not only archaeologicaldata and historic and ethnographic accounts but also genomic, isotopic, and bioarchaeologicaldata, as well as innovative use of thermal niche modeling for paleoclimate reconstruction. Together these linesof evidence have allowed us to address project questions about human settlement into the region, including(1) sources of population movements into high-elevation environments of the Himalayan arc and (2) bioculturaladaptations to high-mountain environments. In this paper we compare research at several communalmortuary sites, each with a rich assemblage of material culture and human burials: Mebrak (400 B.C.–A.D. 50),Kyang (400–175 B.C.), and Samdzong (A.D. 450–650), as well as intriguing insights from finds in the earlier (ca.1250–450 B.C.) sites of Lubrak, Chokhopani, and Rhirhi. Our genomic findings demonstrate population originsfrom the Tibetan plateau, despite South Asian material culture recovered in early sites. Bioarchaeological findingsof low frequencies of non-specific stress and trauma indicate successful biocultural adaptation to highaltitudeconditions of hypoxia, cold, and low resource availability, potentially through buffering from exchangenetworks and local cultural practices, alongside high-altitude selected alleles. An integrative, multidisciplinaryapproach thus offers significantly greater opportunities for developing a more nuanced understanding of thepast processes of migration, settlement, and biocultural adaptation in the region. La investigación antropológica de las alturas del noroeste de Nepal nos proporciona conocimientos de la historiade la población del arco Himalaya a través de un enfoque multidisciplinario e interdisciplinario que incluyeno solamente datos arqueológicos y relatos históricos y etnográficos, sino también datos genómicos, isotópicos,y bioarqueológicos, tanto como uso innovador del modelado del nicho térmico para la reconstrucción paleoclimática.En conjunto, estas líneas de evidencia nos han permitido abordar temas sobre el asentamiento humanade la región, como: (1) los orígenes del movimiento hacia ambientes en las alturas del arco del Himalaya;y (2) las adaptaciones bioculturales necesarias para vivir en las alturas. En este artículo comparamos las investigacionesde varios mortuorios comunales que ofrecen conjuntos abundantes de entierros humanos y artefactosrelacionados: Mebrak (400 a.C.–d.C. 50), Kyang (400–175 a.C.), and Samdzong (d.C. 450–650), así como loshallazgos intrigantes de sitios anteriores (ca. 1250–450 a.C.) de Lubrak, Chokhopani, y Rhirhi. Nuestros datosgenómicos sugieren orígenes de le población del altiplano tibetano, a pesar del material que deriva del sur de Asia que se ha recuperado de los sitios mas tempranos. Los hallazgos bioarqueológicos demuestran niveles bajosde estrés y trauma inespecífico, y sugieren éxito en adaptación biocultural, a pesar de las condiciones de hipoxia,frio, y los recursos escasos en este ambiente. Es posible que alelos seleccionados a las alturas, junto con sistemasde intercambio y las costumbres locales contribuyeron al éxito de la adaptación. Por lo tanto, un enfoque multidisciplinarioque integra todas las evidencias ofrece una comprensión mas detallada de los procesos de migración,asentamiento, y adaptación biocultural de la región.


Water ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1350 ◽  
Author(s):  
Maria Velez ◽  
Daniel Conde ◽  
Juan Lozoya ◽  
James Rusak ◽  
Felipe García-Rodríguez ◽  
...  

Paleoenvironmental reconstructions are increasingly being used in conservation biology, ecosystem management, and evaluations of ecosystem services (ES), but their potential to contribute to the ES risk assessment process has not been explored. We propose that the long-term history of the ecosystem provides valuable information that augments and strengthens an ES risk assessment and that it should be considered routinely when undertaking risk assessments. We adjusted a standard ecosystem-based risk management (EBRM) protocol to include paleoenvironmental data, and tested the modified approach on two coastal lagoons in South America. Paleolimnological reconstructions in both lagoons indicate that salinity and nutrients (in Laguna de Rocha), and salinity (in Ciénaga Grande de Santa Marta), as controlled by hydrologic connectivity with the ocean and freshwater tributaries, have been the key variables behind ecosystem’s function. This understanding, applied to inform various components and steps in the EBRM protocol, suggests that the maintenance of hydrological connections should be a management priority to minimize risk to ES. This work illustrates the utility of including paleoenvironmental data in an EBRM context and highlights the need for a more holistic approach to risk management by incorporating the long-term history of ecosystem function.


Sign in / Sign up

Export Citation Format

Share Document