scholarly journals Inter-seasonal investigation of coupled C & N greenhouse gas fluxes in pristine northern ecosystems

Author(s):  
Lona van Delden ◽  
Julia Boike ◽  
Eeva-Stiina Tuittila ◽  
Timo Vesala ◽  
Claire Treat

<p>Accurate annual greenhouse gas (GHG) budgets are the crucial baseline for global climate change forecast scenarios. On the other hand, the parameterization of these forecast models requires more than high-quality GHG datasets, but also the constant improvement of the representation of GHG producing and consuming processes. Extensive research efforts are therefore focusing on increasing our knowledge of the main GHG producing carbon (C) and nitrogen (N) cycles, though surprisingly not so much into their direct interaction. Most annual GHG budgets from pristine northern ecosystems are based on interpolated datasets from sampling campaigns mainly taken during the growing season. Within the ERC funded FluxWIN project, we are investigating how soil and pore water C & N interact and their biogeochemical GHG drivers change over seasons. Freeze-thaw events have previously been identified as significant GHG drivers by rapidly changing moisture and oxygen conditions in the soil matrix, but it remains unclear if and how C & N coupling contributes to these non-growing season emissions. Therefore, a fully automated static chamber system is monitoring GHG fluxes in high frequency at a boreal peatland ecosystem in Siikaneva, Finland. Nutrient stocks and biogeochemical dynamics within the soil matrix are compared to GHG soil-atmosphere exchange in the form of carbon dioxide (CO<sub>2</sub>), methane (CH<sub>4</sub>) and nitrous oxide (N<sub>2</sub>O) all year-round. We control for climatic variability and isolate differences in non-growing season emissions by using a moisture gradient from well-drained upland soils to adjacent wetland ecosystems. The use of these automated high-frequency GHG measurements in combination with year-round biogeochemical monitoring maximizes the likelihood of capturing episodic emissions and their drivers, which are particularly important during fall freeze and spring thaw periods. The gained information on the coupled C & N biogeochemical cycles will improve feedback estimates of climate change by including non-growing season processes in global-scale process-based models.</p>

2021 ◽  
Vol 73 (1) ◽  
pp. A171220
Author(s):  
Gustavo Olivares-Casillas ◽  
Alex Correa-Metrio ◽  
Edyta Zawisza ◽  
Marta Wojewódka-Przybył ◽  
Maarten Blaauw ◽  
...  

The last three millennia have been characterized by global temperature oscillations of around one Celsius degree, and high frequency variability on precipitation. Two main temperature anomalies have been reported worldwide, the Medieval Warm Period (MWP) and the Little Ice Age (LIA), characterized by higher and lower than average temperatures, respectively. Precipitation variability has been mostly associated with El Niño anomalies in the Equatorial Pacific. These global variability modes have been modulated by regional factors such as sea surface temperatures and their interaction with continental landmasses. Understanding regional responses to these anomalies would shed light on ecosystem response to environmental variability, a paramount tool for conservation purposes on the light of modern climate change. Here we present a 3,000-year sedimentary record from Lake Metztitlán, located in a Biosphere Reserve under the rain shadow of the Sierra Madre Oriental. Cladoceran and geochemical analyses were used to reconstruct lacustrine dynamics through the time period encompassed by the record. Our record points to highly dynamic lacustrine systems, coupled with global and regional climatic variability. In Metztitlán, the MWP was associated with low lake levels and a high torrentiality of the precipitation reflected in high-frequency peaks of detrital material. The LIA was associated with an enlarged water body, probably as a result of lower evapotranspiration. Overall, global climatic variability resulted in high variability of regional precipitation and detrital input in the Metztitlán region, in turn associated with changes in lake morphometry and depth. Our record highlights the vulnerability of the area to changes in sea surface temperature of the Gulf of Mexico, and to changes in the frequency of El Niño events. Although the effects of global climate change in the region are inescapable, our results emphasize the importance of controlling anthropogenic activities as an additional source of pressure on the regional ecosystems.


2021 ◽  
Vol 13 (4) ◽  
pp. 669
Author(s):  
Hanchen Duan ◽  
Xian Xue ◽  
Tao Wang ◽  
Wenping Kang ◽  
Jie Liao ◽  
...  

Alpine meadow and alpine steppe are the two most widely distributed nonzonal vegetation types in the Qinghai-Tibet Plateau. In the context of global climate change, the differences in spatial-temporal variation trends and their responses to climate change are discussed. It is of great significance to reveal the response of the Qinghai-Tibet Plateau to global climate change and the construction of ecological security barriers. This study takes alpine meadow, alpine steppe and the overall vegetation of the Qinghai-Tibet Plateau as the research objects. The normalized difference vegetation index (NDVI) data and meteorological data were used as the data sources between 2000 and 2018. By using the mean value method, threshold method, trend analysis method and correlation analysis method, the spatial and temporal variation trends in the alpine meadow, alpine steppe and the overall vegetation of the Qinghai-Tibet Plateau were compared and analyzed, and their differences in the responses to climate change were discussed. The results showed the following: (1) The growing season length of alpine meadow was 145~289 d, while that of alpine steppe and the overall vegetation of the Qinghai-Tibet Plateau was 161~273 d, and their growing season lengths were significantly shorter than that of alpine meadow. (2) The annual variation trends of the growing season NDVI for the alpine meadow, alpine steppe and the overall vegetation of the Qinghai-Tibet Plateau increased obviously, but their fluctuation range and change rate were significantly different. (3) The overall vegetation improvement in the Qinghai-Tibet Plateau was primarily dominated by alpine steppe and alpine meadow, while the degradation was primarily dominated by alpine meadow. (4) The responses between the growing season NDVI and climatic factors in the alpine meadow, alpine steppe and the overall vegetation of the Qinghai-Tibet Plateau had great spatial heterogeneity in the Qinghai-Tibet Plateau. These findings provide evidence towards understanding the characteristics of the different vegetation types in the Qinghai-Tibet Plateau and their spatial differences in response to climate change.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Yuhao Feng ◽  
Haojie Su ◽  
Zhiyao Tang ◽  
Shaopeng Wang ◽  
Xia Zhao ◽  
...  

AbstractGlobal climate change likely alters the structure and function of vegetation and the stability of terrestrial ecosystems. It is therefore important to assess the factors controlling ecosystem resilience from local to global scales. Here we assess terrestrial vegetation resilience over the past 35 years using early warning indicators calculated from normalized difference vegetation index data. On a local scale we find that climate change reduced the resilience of ecosystems in 64.5% of the global terrestrial vegetated area. Temperature had a greater influence on vegetation resilience than precipitation, while climate mean state had a greater influence than climate variability. However, there is no evidence for decreased ecological resilience on larger scales. Instead, climate warming increased spatial asynchrony of vegetation which buffered the global-scale impacts on resilience. We suggest that the response of terrestrial ecosystem resilience to global climate change is scale-dependent and influenced by spatial asynchrony on the global scale.


2021 ◽  
Vol 193 (4) ◽  
Author(s):  
Stefan Erasmi ◽  
Michael Klinge ◽  
Choimaa Dulamsuren ◽  
Florian Schneider ◽  
Markus Hauck

AbstractThe monitoring of the spatial and temporal dynamics of vegetation productivity is important in the context of carbon sequestration by terrestrial ecosystems from the atmosphere. The accessibility of the full archive of medium-resolution earth observation data for multiple decades dramatically improved the potential of remote sensing to support global climate change and terrestrial carbon cycle studies. We investigated a dense time series of multi-sensor Landsat Normalized Difference Vegetation Index (NDVI) data at the southern fringe of the boreal forests in the Mongolian forest-steppe with regard to the ability to capture the annual variability in radial stemwood increment and thus forest productivity. Forest productivity was assessed from dendrochronological series of Siberian larch (Larix sibirica) from 15 plots in forest patches of different ages and stand sizes. The results revealed a strong correlation between the maximum growing season NDVI of forest sites and tree ring width over an observation period of 20 years. This relationship was independent of the forest stand size and of the landscape’s forest-to-grassland ratio. We conclude from the consistent findings of our case study that the maximum growing season NDVI can be used for retrospective modelling of forest productivity over larger areas. The usefulness of grassland NDVI as a proxy for forest NDVI to monitor forest productivity in semi-arid areas could only partially be confirmed. Spatial and temporal inconsistencies between forest and grassland NDVI are a consequence of different physiological and ecological vegetation properties. Due to coarse spatial resolution of available satellite data, previous studies were not able to account for small-scaled land-cover patches like fragmented forest in the forest-steppe. Landsat satellite-time series were able to separate those effects and thus may contribute to a better understanding of the impact of global climate change on natural ecosystems.


Author(s):  
Jiban Mani Poudel

In the 21st century, global climate change has become a public and political discourse. However, there is still a wide gap between global and local perspectives. The global perspective focuses on climate fluctuations that affect the larger region; and their analysis is based on long-term records over centuries and millennium. By comparison, local peoples’ perspectives vary locally, and local analyses are limited to a few days, years, decades and generations only. This paper examines how farmers in Kirtipur of Kathmandu Valley, Nepal, understand climate variability in their surroundings. The researcher has used a cognized model to understand farmers’ perception on weather fluctuations and climate change. The researcher has documented several eyewitness accounts of farmers about weather fluctuations which they have been observing in a lifetime. The researcher has also used rainfall data from 1970-2009 to test the accuracy of perceptions. Unlike meteorological analyses, farmers recall and their understanding of climatic variability by weather-crop interaction, and events associating with climatic fluctuations and perceptions are shaped by both physical visibility and cultural frame or belief system.DOI: http://dx.doi.org/10.3126/hn.v11i1.7200 Hydro Nepal Special Issue: Conference Proceedings 2012 pp.30-34


Author(s):  
Farshid Zabihian ◽  
Alan S. Fung

Nowadays, the global climate change has been a worldwide concern and the greenhouse gases (GHG) emissions are considered as the primary cause of that. The United Nations Conference on Environment and Development (UNCED) divided countries into two groups: Annex I Parties and Non-Annex I Parties. Since Iran and all other countries in the Middle East are among Non-Annex I Parties, they are not required to submit annual GHG inventory report. However, the global climate change is a worldwide phenomenon so Middle Eastern countries should be involved and it is necessary to prepare such a report at least unofficially. In this paper the terminology and the methods to calculate GHG emissions will first be explained and then GHG emissions estimates for the Iranian power plants will be presented. Finally the results will be compared with GHG emissions from the Canadian electricity generation sector. The results for the Iranian power plants show that in 2005 greenhouse gas intensity for steam power plants, gas turbines and combined cycle power plants were 617, 773, and 462 g CO2eq/kWh, respectively with the overall intensity of 610 g CO2eq/kWh for all thermal power plants. This GHG intensity is directly depend on efficiency of power plants. Whereas, in 2004 GHG intensity for electricity generation sector in Canada for different fuels were as follows: Coal 1010, refined petroleum products 640, and natural gas 523 g CO2eq/kWh, which are comparable with same data for Iran. For average GHG intensity in the whole electricity generation sector the difference is much higher: Canada 222 vs. Iran 610g CO2eq/kWh. The reason is that in Canada a considerable portion of electricity is generated by hydro-electric and nuclear power plants in which they do not emit significant amount of GHG emissions. The average GHG intensity in electricity generation sector in Iran between 1995 and 2005 experienced 13% reduction. While in Canada at the same period of time there was 21% increase. However, the results demonstrate that still there are great potentials for GHG emissions reduction in Iran’s electricity generation sector.


2020 ◽  
Vol 4 ◽  
Author(s):  
Stewart A. Jennings ◽  
Ann-Kristin Koehler ◽  
Kathryn J. Nicklin ◽  
Chetan Deva ◽  
Steven M. Sait ◽  
...  

The contribution of potatoes to the global food supply is increasing—consumption more than doubled in developing countries between 1960 and 2005. Understanding climate change impacts on global potato yields is therefore important for future food security. Analyses of climate change impacts on potato compared to other major crops are rare, especially at the global scale. Of two global gridded potato modeling studies published at the time of this analysis, one simulated the impacts of temperature increases on potential potato yields; the other did not simulate the impacts of farmer adaptation to climate change, which may offset negative climate change impacts on yield. These studies may therefore overestimate negative climate change impacts on yields as they do not simultaneously include CO2 fertilisation and adaptation to climate change. Here we simulate the abiotic impacts of climate change on potato to 2050 using the GLAM crop model and the ISI-MIP ensemble of global climate models. Simulations include adaptations to climate change through varying planting windows and varieties and CO2 fertilisation, unlike previous global potato modeling studies. Results show significant skill in reproducing observed national scale yields in Europe. Elsewhere, correlations are generally positive but low, primarily due to poor relationships between national scale observed yields and climate. Future climate simulations including adaptation to climate change through changing planting windows and crop varieties show that yields are expected to increase in most cases as a result of longer growing seasons and CO2 fertilisation. Average global yield increases range from 9 to 20% when including adaptation. The global average yield benefits of adaptation to climate change range from 10 to 17% across climate models. Potato agriculture is associated with lower green house gas emissions relative to other major crops and therefore can be seen as a climate smart option given projected yield increases with adaptation.


2001 ◽  
Vol 41 (1) ◽  
pp. 689
Author(s):  
C.D. Mitchell ◽  
G.I. Pearman

The prospect of global-scale changes in climate resulting from changes in atmospheric greenhouse gas concentrations has produced a complex set of public and private- sector responses. This paper reviews several elements of this issue that are likely to be most important to industry.Scientific research continues to provide evidence to suggest that global climate will change significantly over the coming decades due to increases in the atmospheric concentration of greenhouse gases. Nonetheless, there exists a debate over the difference between observations of temperature retrieved from satellite and temperature measurements taken from the surface. Recent research undertaken to inform the debate is discussed, with the conclusion that there are real differences in trend between the surface and the lower atmosphere that can be explained in physical terms. Attention is turning to developing an understanding as to why climate model results show apparently consistent trends between the surface and the lower atmosphere, in contrast to these observations.While such uncertainties in the underlying science have been used to question whether action on the greenhouse issues is necessary, the initial response, as evidenced by international negotiations, has been to start mitigating greenhouse gas emissions. Adaptation to future climate change has received less attention than mitigation. A number of reasons for this are discussed, including the fact that regional scenarios of climate change are uncertain.The principles of risk management may be one way to manage the uncertainties associated with projections of regional climate change. Although the application of risk management to the potential impacts of climate change requires further investigation, elements of such a framework are identified, and include:Identifying the critical climate-related thresholds that are important to industry and its operations (for example, a 1-in-100 year return tropical cyclone).Using this understanding to analyse, and where possible quantify, industry’s pre-existing or baseline adaptive state through the use of sensitivity surfaces and quantified thresholds (for example, were facilities designed for a 1-in-100 event or a 1-in-500 year event?)Establishing probabilistic statements or scenarios of climate that are relevant to industry practice (for example, risk of a storm surge may be more important to operations than elevated wind strength; if so, what is the probability that an event will exceed the design threshold during the lifetime of the facility?).Bringing information on existing adaptive mechanisms together with climate scenarios to produce a quantitative risk assessment.Deciding on risk treatment (additional adaptive measures).


Author(s):  
Francis Ferraro

The potential for global climate change due to the release of greenhouse gas (GHG) emissions is being debated both nationally and internationally. While many options for reducing GHG emissions are being evaluated, MSW management presents potential options for reductions and has links to other sectors (e.g., energy, industrial processes, forestry, transportation) with further GHG reduction opportunities.


Sign in / Sign up

Export Citation Format

Share Document