Variability of near-inertial waves in the lower stratosphere from balloon observations and the ECMWF (re)analyses

Author(s):  
Aurélien Podglajen ◽  
Riwal Plougonven ◽  
Albert Hertzog ◽  
Selvaraj Dharmalingam

<p>Near-inertial waves (NIWs) with intrinsic frequency close to the local Coriolis parameter <em>f</em> constitute a striking component of the kinetic energy spectrum in both the atmosphere and the ocean. However, contrary to the oceanic case, the strong and variable background atmospheric winds tend to shift the frequency of the waves (Doppler effect). As a consequence, atmospheric NIWs cannot generally be observed directly as a kinetic energy peak at ground-based frequency <em>f </em>but are instead diagnosed indirectly (e.g. using the polarisation and dispersion relations). This complication does not appear when analyzing quasi-lagrangian observations from superpressure balloons (SPB), which drift together with the flow and are thus exempt from Doppler shift. Past SPB observations in the lower stratosphere have revealed the magnitude of the kinetic energy peak associated with NIWs and it was recently shown that state-of-the-art reanalyses partly represent this feature.</p><p>In this presentation, we will investigate the variability of NIWs using ECMWF (re)analysis products (the operational analysis and ERA5) and balloon observations from recent CNES campaigns (2005, 2010 and 2019-2020) at various latitudes ranging from the equator to the pole (and hence different inertial frequencies). As in Podglajen et al. (2020), NIWs are extracted from the (re)analyses by computing Lagrangian trajectories using the analyzed wind and temperature fields. We will illustrate the remarkable realism of model NIWs, both statistically and for specific case studies. Then, we will characterize the geographic and seasonal variability of NIW properties. In light of those results, possible factors influencing the near-inertial energy peak (horizontal wave propagation, refraction near critical levels, tide interactions) and the parallel with the oceanic situation will be discussed, as well as the ability of the model and data assimilation system to simulate them.</p><p>Reference :</p><p>Podglajen, A., Hertzog, A., Plougonven, R., and Legras, B.: Lagrangian gravity wave spectra in the lower stratosphere of current (re)analyses, Atmos. Chem. Phys., 20, 9331–9350, https://doi.org/10.5194/acp-20-9331-2020, 2020.</p>

2002 ◽  
Vol 29 (8) ◽  
pp. 70-1-70-4 ◽  
Author(s):  
A. Hertzog ◽  
F. Vial ◽  
C. R. Mechoso ◽  
C. Basdevant ◽  
P. Cocquerez

For the continual development of the kinetic energy of the winds, it is necessary for the upper troposphere to be cooled by radiation. Results are reported of nine aircraft ascents on which the upward and downward flows of infra-red radiation were measured and com­pared with values calculated using the radiation charts of Elsasser and Yamamoto. The divergence of radiative flux deduced from these measurements clearly shows that the cooling in the troposphere is not very different from that calculated from radiation charts. The importance of clouds on the radiative pattern is demonstrated; at the moment, incom­plete knowledge of cloud structure will be the chief factor limiting the value of calculations of atmospheric radiation. The measurements are of very limited value in the stratosphere, since, for the very small quantities of water there, the effective radiation is in the rotation band of water vapour ( λ between 30 and 70 μ ) and the radiometer used was not sensitive to these wavelengths. If the use of radiation charts is extrapolated to these conditions they indicate that the radiative cooling continues in the lower stratosphere. This is in contrast with the ‘classical’ view that the stratosphere is in radiative equilibrium.


2019 ◽  
Vol 867 ◽  
pp. 906-933 ◽  
Author(s):  
Riccardo Togni ◽  
Andrea Cimarelli ◽  
Elisabetta De Angelis

In this work we present and demonstrate the reliability of a theoretical framework for the study of thermally driven turbulence. It consists of scale-by-scale budget equations for the second-order velocity and temperature structure functions and their limiting cases, represented by the turbulent kinetic energy and temperature variance budgets. This framework represents an extension of the classical Kolmogorov and Yaglom equations to inhomogeneous and anisotropic flows, and allows for a novel assessment of the turbulent processes occurring at different scales and locations in the fluid domain. Two relevant characteristic scales, $\ell _{c}^{u}$ for the velocity field and $\ell _{c}^{\unicode[STIX]{x1D703}}$ for the temperature field, are identified. These variables separate the space of scales into a quasi-homogeneous range, characterized by turbulent kinetic energy and temperature variance cascades towards dissipation, and an inhomogeneity-dominated range, where the production and the transport in physical space are important. This theoretical framework is then extended to the context of large-eddy simulation to quantify the effect of a low-pass filtering operation on both resolved and subgrid dynamics of turbulent Rayleigh–Bénard convection. It consists of single-point and scale-by-scale budget equations for the filtered velocity and temperature fields. To evaluate the effect of the filter length $\ell _{F}$ on the resolved and subgrid dynamics, the velocity and temperature fields obtained from a direct numerical simulation are split into filtered and residual components using a spectral cutoff filter. It is found that when $\ell _{F}$ is smaller than the minimum values of the cross-over scales given by $\ell _{c,min}^{\unicode[STIX]{x1D703}\ast }=\ell _{c,min}^{\unicode[STIX]{x1D703}}Nu/H=0.8$, the resolved processes correspond to the exact ones, except for a depletion of viscous and thermal dissipations, and the only role of the subgrid scales is to drain turbulent kinetic energy and temperature variance to dissipate them. On the other hand, the resolved dynamics is much poorer in the near-wall region and the effects of the subgrid scales are more complex for filter lengths of the order of $\ell _{F}\approx 3\ell _{c,min}^{\unicode[STIX]{x1D703}}$ or larger. This study suggests that classic eddy-viscosity/diffusivity models employed in large-eddy simulation may suffer from some limitations for large filter lengths, and that alternative closures should be considered to account for the inhomogeneous processes at subgrid level. Moreover, the theoretical framework based on the filtered Kolmogorov and Yaglom equations may represent a valuable tool for future assessments of the subgrid-scale models.


Atmosphere ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 420 ◽  
Author(s):  
Henri Lam ◽  
Alexandre Delache ◽  
Fabien S Godeferd

We consider the separation of motion related to internal gravity waves and eddy dynamics in stably stratified flows obtained by direct numerical simulations. The waves’ dispersion relation links their angle of propagation to the vertical θ , to their frequency ω , so that two methods are used for characterizing wave-related motion: (a) the concentration of kinetic energy density in the ( θ , ω ) map along the dispersion relation curve; and (b) a direct computation of two-point two-time velocity correlations via a four-dimensional Fourier transform, permitting to extract wave-related space-time coherence. The second method is more computationally demanding than the first. In canonical flows with linear kinematics produced by space-localized harmonic forcing, we observe the pattern of the waves in physical space and the corresponding concentration curve of energy in the ( θ , ω ) plane. We show from a simple laminar flow that the curve characterizing the presence of waves is distorted differently in the presence of a background convective mean velocity, either uniform or varying in space, and also when the forcing source is moving. By generalizing the observation from laminar flow to turbulent flow, this permits categorizing the energy concentration pattern of the waves in complex flows, thus enabling the identification of wave-related motion in a general turbulent flow with stable stratification. The advanced method (b) is finally used to compute the wave-eddy partition in the velocity–buoyancy fields of direct numerical simulations of stably stratified turbulence. In particular, we use this splitting in statistics as varied as horizontal and vertical kinetic energy, as well as two-point velocity and buoyancy spectra.


2011 ◽  
Vol 68 (4) ◽  
pp. 839-862 ◽  
Author(s):  
Gui-Ying Yang ◽  
Brian J. Hoskins ◽  
Julia M. Slingo

Abstract A methodology for identifying equatorial waves is used to analyze the multilevel 40-yr ECMWF Re-Analysis (ERA-40) data for two different years (1992 and 1993) to investigate the behavior of the equatorial waves under opposite phases of the quasi-biennial oscillation (QBO). A comprehensive view of 3D structures and of zonal and vertical propagation of equatorial Kelvin, westward-moving mixed Rossby–gravity (WMRG), and n = 1 Rossby (R1) waves in different QBO phases is presented. Consistent with expectation based on theory, upward-propagating Kelvin waves occur more frequently during the easterly QBO phase than during the westerly QBO phase. However, the westward-moving WMRG and R1 waves show the opposite behavior. The presence of vertically propagating equatorial waves in the stratosphere also depends on the upper tropospheric winds and tropospheric forcing. Typical propagation parameters such as the zonal wavenumber, zonal phase speed, period, vertical wavelength, and vertical group velocity are found. In general, waves in the lower stratosphere have a smaller zonal wavenumber, shorter period, faster phase speed, and shorter vertical wavelength than those in the upper troposphere. All of the waves in the lower stratosphere show an upward group velocity and downward phase speed. When the phase of the QBO is not favorable for waves to propagate, their phase speed in the lower stratosphere is larger and their period is shorter than in the favorable phase, suggesting Doppler shifting by the ambient flow and a filtering of the slow waves. Tropospheric WMRG and R1 waves in the Western Hemisphere also show upward phase speed and downward group velocity, with an indication of their forcing from middle latitudes. Although the waves observed in the lower stratosphere are dominated by “free” waves, there is evidence of some connection with previous tropical convection in the favorable year for the Kelvin waves in the warm water hemisphere and WMRG and R1 waves in the Western Hemisphere, which is suggestive of the importance of convective forcing for the existence of propagating coupled Kelvin waves and midlatitude forcing for the existence of coupled WMRG and R1 waves.


Author(s):  
Bernardo Buonomo ◽  
Oronzio Manca ◽  
Sergio Nardini ◽  
Gianluca Tartaglione

Solar chimney is a new method to produce electrical power. It employs solar radiation to raise the temperature of the air and the buoyancy of warm air to accelerate the air stream flowing through the system. By converting thermal energy into the kinetic energy of air movement, solar chimneys have a number of different applications such as ventilation, passive solar heating and cooling of buildings, solar-energy drying, and power generation. Moreover, it can be employed as an energy conversion system from solar to mechanical. A component, such as a turbine or piezoelectric component, set in the path of the air current, converts the kinetic energy of the flowing air into electricity. In this paper, a numerical investigation on a prototypal solar chimney system integrated in a south facade of a building is presented. The chimney is 4.0 m high, 1.5 m wide whereas the thickness is 0.20 m for the vertical parallel walls configuration and at the inlet 0.34 m and at the outlet 0.20 m for convergent configuration. The chimney consists of a converging channel with one vertical wall and one inclined of 2°. The analysis is carried out on a three-dimensional model in airflow and the governing equations are given in terms of k-ε turbulence model. The problem is solved by means of the commercial code Ansys-Fluent. The numerical analysis was intended to examine the effect of the solar chimney’s height and spacing. Further, comparison between radiative and non-radiative model is examined and discussed. Results are given in terms of wall temperature distributions, air velocity and temperature fields and transversal profiles for a uniform wall heat flux on the vertical wall equal to 300 W/m2. Thermal and fluid dynamics behaviors are evaluated in order to have some indications to improve the energy efficiency of the system.


2007 ◽  
Vol 64 (12) ◽  
pp. 4417-4431 ◽  
Author(s):  
Chris Snyder ◽  
David J. Muraki ◽  
Riwal Plougonven ◽  
Fuqing Zhang

Abstract Vortex dipoles provide a simple representation of localized atmospheric jets. Numerical simulations of a synoptic-scale dipole in surface potential temperature are considered in a rotating, stratified fluid with approximately uniform potential vorticity. Following an initial period of adjustment, the dipole propagates along a slightly curved trajectory at a nearly steady rate and with a nearly fixed structure for more than 50 days. Downstream from the jet maximum, the flow also contains smaller-scale, upward-propagating inertia–gravity waves that are embedded within and stationary relative to the dipole. The waves form elongated bows along the leading edge of the dipole. Consistent with propagation in horizontal deformation and vertical shear, the waves’ horizontal scale shrinks and the vertical slope varies as they approach the leading stagnation point in the dipole’s flow. Because the waves persist for tens of days despite explicit dissipation in the numerical model that would otherwise damp the waves on a time scale of a few hours, they must be inherent features of the dipole itself, rather than remnants of imbalances in the initial conditions. The wave amplitude varies with the strength of the dipole, with waves becoming obvious once the maximum vertical vorticity in the dipole is roughly half the Coriolis parameter. Possible mechanisms for the wave generation are spontaneous wave emission and the instability of the underlying balanced dipole.


Sign in / Sign up

Export Citation Format

Share Document