Seismic velocity recovery following the 2015 Mw 7.8 Gorkha earthquake, Nepal: Towards a coupled vision of damage and hydrological-induced velocity variations

Author(s):  
Luc Illien ◽  
Christoph Sens-Schönfelder ◽  
Christoff Andermann ◽  
Odin Marc ◽  
Kristen Cook ◽  
...  

<p>Following the passage of seismic waves, most geomaterials experience non-linear mesoscopic elasticity (<em>NLME</em>). This is described by a drop in elastic moduli that precedes a subsequent recovery of physical properties over a relaxation timescale. Thanks to the development of seismic interferometry techniques that allows for the continuous monitoring of relative seismic velocity changes <em>δv</em> in the subsurface, observations of <em>NLME</em> (<em>δv</em><sub><em>NLME</em></sub>) in the field are now numerous. In parallel, a growing community uses seismic interferometry to monitor velocity changes induced by seasonal hydrological variations (<em>δv<sub>hydro</sub></em>). Monitoring of these variations are often independently done and a linear superposition of both effects is mostly assumed when decomposing the observed <em>δv</em> signal (<em>δv</em> =  <em>δv<sub>NLME</sub></em> + <em>δv<sub>hydro</sub></em>). However, transient hydrological behaviour following co-seismic ground shaking has been widely reported in boreholes measurements and streamflow, which suggests that  <em>δv<sub>hydro</sub></em> may be impacted by the transient variation of material properties caused by <em>NLME</em>. In this presentation, we attempt to characterize the relative seismic velocity variations <em>δv</em> retrieved from a small dense seismic array in Nepal that was deployed in the aftermath of the  2015 Mw 7.8 Gorkha earthquake and that is prone to highly variable hydrological conditions. We first investigated the effect of aftershocks in computing <em>δv</em> at a 10-minute resolution centered around significant ground shaking events. After correcting <em>δv</em> for <em>NLME</em> caused by the Gorkha earthquake and its subsequent aftershocks, we test whether the corresponding residuals are in agreement with the background hydrological behaviour which we inferred from a calibrated hydrological model. This is not the case and we find that transient hydrological properties improve the data description in the early phase after the mainshock. We report three distinct relaxation time scales that are relevant for the recovery of seismic velocity at our field site:  <strong>1.</strong> A long time scale activated by the main shock of the Gorkha earthquake (~1 year) <strong>2.</strong> A relatively short timescale (1-3 days) that occurs after moderate aftershocks. <strong>3.</strong> An intermediate timescale (4-6 months) during the 2015 monsoon season that corresponds to the recovery of the hydrological system. This timescale could correspond to an enhanced permeability caused by Gorkha ground shaking. Our study demonstrates the capability of seismic interferometry to monitor transient hydrological properties after earthquakes at a spatial scale that is not available with classical hydrological measurements. This investigation demands calibrated hydrological models and a framework in which the different forcing of <em>δv</em> are coupled.</p>

2022 ◽  
Author(s):  
Luc Illien ◽  
Christoph Sens-Schönfelder ◽  
Christoph Andermann ◽  
Odin Marc ◽  
Kristen Cook ◽  
...  

Shallow earthquakes frequently disturb the hydrological and mechanical state of the subsurface, with consequences for hazard and water management. Transient post-seismic hydrological behaviour has been widely reported, suggesting that the recovery of material properties (relaxation) following ground shaking may impact groundwater fluctuations. However, the monitoring of seismic velocity variations associated with earthquake damage and hydrological variations are often done assuming that both effects are independent. In a field site prone to highly variable hydrological conditions, we disentangle the different forcing of the relative seismic velocity variations $\delta v$ retrieved from a small dense seismic array in Nepal in the aftermath of the 2015 Mw 7.8 Gorkha earthquake. We successfully model transient damage effects by introducing a universal relaxation function that contains a unique maximum relaxation timescale for the main shock and the aftershocks, independent of the ground shaking levels. Next, we remove the modeled velocity from the raw data and test whether the corresponding residuals agree with a background hydrological behaviour we inferred from a previously calibrated groundwater model. The fitting of the $\delta v$ data with this model is improved when we introduce transient hydrological properties in the phase immediately following the main shock. This transient behaviour, interpreted as an enhanced permeability in the shallow subsurface, lasts for $\sim$ 6 months and is shorter than the damage relaxation ($\sim$ 1 year). Thus, we demonstrate the capability of seismic interferometry to deconvolve transient hydrological properties after earthquakes from non-linear mechanical recovery.


2021 ◽  
Vol 13 (14) ◽  
pp. 2684
Author(s):  
Eldert Fokker ◽  
Elmer Ruigrok ◽  
Rhys Hawkins ◽  
Jeannot Trampert

Previous studies examining the relationship between the groundwater table and seismic velocities have been guided by empirical relationships only. Here, we develop a physics-based model relating fluctuations in groundwater table and pore pressure with seismic velocity variations through changes in effective stress. This model justifies the use of seismic velocity variations for monitoring of the pore pressure. Using a subset of the Groningen seismic network, near-surface velocity changes are estimated over a four-year period, using passive image interferometry. The same velocity changes are predicted by applying the newly derived theory to pressure-head recordings. It is demonstrated that the theory provides a close match of the observed seismic velocity changes.


2021 ◽  
Author(s):  
Fabian Lindner ◽  
Joachim Wassermann

<p>Permafrost thawing affects mountain slope stability and can trigger hazardous rock falls. As rising temperatures promote permafrost thawing, spatio-temporal monitoring of long-term and seasonal variations in the perennially frozen rock is therefore crucial in regions with high hazard potential. With various infrastructure in the summit area and population in the close vicinity, Mt. Zugspitze in the German/Austrian Alps is such a site and permafrost has been monitored with temperature logging in boreholes and lapse-time electrical resistivity tomography. Yet, these methods are expensive and laborious, and are limited in their spatial and/or temporal resolution.</p><p>Here, we analyze continuous seismic data from a single station deployed at an altitude of 2700 m a.s.l. in a research station, which is separated by roughly 250 m from the permafrost affected ridge of Mt. Zugspitze. Data are available since 2006 (with some gaps) and reveal high-frequency (>1 Hz) anthropogenic noise likely generated by the cable car stations at the summit. We calculate single-station cross-correlations between the different sensor components and investigate temporal coda wave changes by applying the recently introduced wavelet-based cross-spectrum method. This approach provides time series of the travel time relative to the reference stack as a function of frequency and lag time in the correlation functions. In the frequency and lag range of 1-10 Hz and 0.5-5 s respectively, we find various parts in the coda that show clear annual variations and an increasing trend in travel time over the past 15 years of consideration. Converting the travel time variations to seismic velocity variations (assuming homogeneous velocity changes affecting the whole mountain) results in seasonal velocity changes of up to a few percent and on the order of 0.1% decrease per year. Yet, estimated velocity variations do not scale linearly with lag time, which indicates that the medium changes are localized rather than uniform and that the absolute numbers need to be taken with caution. The annual velocity variations are anti-correlated with the temperature record from the summit but delayed by roughly one month.</p><p>The phasing of the annual seismic velocity change (relative to the temperature record) is in agreement with a previous study employing lapse-time electrical resistivity tomography. Furthermore, the decreasing trend in seismic velocity happens concurrently with an increasing trend in temperature. The results therefore suggest that the velocity changes are related to seasonal thaw and refreeze and permafrost degradation and thus highlight the potential of seismology for permafrost monitoring. By adding additional receivers and/or a fiber-optic cable for distributed acoustic sensing, hence increasing the spatial resolution, the presented method holds promise for lapse-time imaging of permafrost bodies with high spatio-temporal resolution from passive measurements.</p>


Geophysics ◽  
2019 ◽  
Vol 84 (4) ◽  
pp. Q37-Q48 ◽  
Author(s):  
Joachim Place ◽  
Deyan Draganov ◽  
Alireza Malehmir ◽  
Christopher Juhlin ◽  
Chris Wijns

Exhumation of crust exposes rocks to weathering agents that weaken the rocks’ mechanical strength. Weakened rocks will have lower seismic velocity than intact rocks and can therefore be mapped using seismic methods. However, if the rocks are heavily weathered, they will attenuate controlled-source seismic waves to such a degree that the recorded wavefield would become dominated by ambient noise and/or surface waves. Therefore, we have examined the structure of differential weathering by first-break traveltime tomography over a seismic profile extending approximately 3.5 km and acquired at a mining site in Zambia using explosive sources and a source based on the swept-impact seismic technique (SIST). Seismic interferometry has been tested for the retrieval of supervirtual first arrivals masked by uncorrelated noise. However, use of crosscorrelation in the retrieval process makes the method vulnerable to changes in the source signal (explosives and SIST). Thus, we have developed a crosscoherence-based seismic-interferometry method to tackle this shortcoming. We investigate the method’s efficiency in retrieving first arrivals and, simultaneously, correctly handling variations in the source signal. Our results illustrate the superiority of the crosscoherence- over crosscorrelation-based method for retrieval of the first arrivals, especially in alleviating spurious ringyness and in terms of the signal-to-noise ratio. These benefits are observable in the greater penetration depth and the improved resolution of the tomography sections. The tomographic images indicate isolated bodies of higher velocities, which may be interpreted as fresh rocks embedded into a heavily weathered regolith, providing a conspicuous example of differential weathering. Our study advances the potential of seismic methods for providing better images of the near surface (the critical zone).


2021 ◽  
Vol 11 (4) ◽  
pp. 1-18
Author(s):  
Q. Bai ◽  
H. Konietzky

This contribution proposes a numerical microstructural modeling approach to investigate stress-induced seismic velocity changes on anisotropic rocks. By introducing pre-existing cracks with preferential orientations in bonded-particle assemblies, the transverse isotropic structure of the Whitby Mudstone is simulated. Using power-law distributed aperture and calibrated micro-properties, we successfully reproduce stress-dependent velocity changes on Whitby Mudstones with different anisotropic angles in relation to the applied loads. The proposed model also duplicates the directional dependence of wave speed with respect to the bedding plane as expected theoretically. The numerical models show that velocity increase results from the closure of pre-existing cracks due to load increase. Direct relations are established between velocity changes and opened crack density (or crack closure), which displays a similar tendency compared with theoretical predictions. This relation can be used to quantify the micromechanisms behind the velocity changes. The proposed model provides the ability to directly examine the micro-processes underlying velocity changes.


Science ◽  
2014 ◽  
Vol 345 (6192) ◽  
pp. 80-82 ◽  
Author(s):  
F. Brenguier ◽  
M. Campillo ◽  
T. Takeda ◽  
Y. Aoki ◽  
N. M. Shapiro ◽  
...  

Volcanic eruptions are caused by the release of pressure that has accumulated due to hot volcanic fluids at depth. Here, we show that the extent of the regions affected by pressurized fluids can be imaged through the measurement of their response to transient stress perturbations. We used records of seismic noise from the Japanese Hi-net seismic network to measure the crustal seismic velocity changes below volcanic regions caused by the 2011 moment magnitude (Mw) 9.0 Tohoku-Oki earthquake. We interpret coseismic crustal seismic velocity reductions as related to the mechanical weakening of the pressurized crust by the dynamic stress associated with the seismic waves. We suggest, therefore, that mapping seismic velocity susceptibility to dynamic stress perturbations can be used for the imaging and characterization of volcanic systems.


2016 ◽  
Vol 4 (3) ◽  
pp. SJ77-SJ85 ◽  
Author(s):  
Gerrit Olivier ◽  
Florent Brenguier

Recent results have shown that crosscorrelating ambient seismic noise recorded in underground mines can successfully extract the seismic Green’s function between sensors. We have revisited an earlier experiment that showed that these virtual seismic sources can be used to measure changes in seismic velocity accurately enough to monitor the short- and long-term influences of a blast in an underground mine. To use this method routinely, it is important to determine the cause of velocity variations in the absence of large dynamic stress perturbations (such as blasts). It also is important to calibrate the seismic velocity changes in terms of known stress changes so the effect of mining activities can be quantified in units that can be used by geotechnical engineers. To this end, we used coda-wave interferometry to measure relative velocity variations during times where no significant blasting or microseismic activity occurred and compared it to atmospheric air pressure changes, temperature variations, and modeled tidal strain. The results indicate that atmospheric air pressure changes have a measurable influence on the long-term seismic velocity variations at depth in the absence of large dynamic stress perturbations. This influence enabled us to determine the sensitivity of the relative velocity changes to stress, where a value of [Formula: see text] was found. This calibration essentially enables us to turn each sensor pair in an underground mine into a stress meter, paving the way for geotechnical engineers to use ambient seismic noise correlations to monitor the evolution of stress and to assess seismic hazard in conjunction with conventional microseismic methods.


2019 ◽  
Vol 219 (3) ◽  
pp. 2165-2173
Author(s):  
Gaia Soldati ◽  
Lucia Zaccarelli ◽  
Licia Faenza

SUMMARY We investigate the temporal changes of crustal velocity associated to the seismic sequence of 2016–2017, which struck central Italy with a series of moderate to large earthquakes. We cross-correlate continuous recordings of 2 yr of ambient seismic noise from a network of 28 stations within a radius of 90 km around Amatrice town. We then map the spatio-temporal evolution of the velocity perturbations under the effect of subsequent earthquakes. Coinciding with each of the three main shocks of the sequence we observe a sudden drop of seismic velocity which tends to quickly recover in the short term. After the end of the strongest activity of the sequence, the coseismic velocity changes display gradual healing towards pre-earthquake conditions following a quasi-linear trend, such that by the end of 2017 about 75 per cent of the perturbation is recovered. The spatial distribution of the velocity drop fluctuates with time, and the area that shows the most intense variations beyond the ruptured fault system elongates in the NE direction. This zone roughly corresponds to a region of foredeep sedimentary deposits consisting of highly hydrated and porous sandstones, which respond to the passage of seismic waves with increased pore pressure and crack number, leading to a reduction of the effective relative velocity.


2021 ◽  
Author(s):  
◽  
Adrian Shelley

<p>This thesis is concerned with scrutinising the source, distribution and detectability of seismic velocity phenomena that may be used as proxies to study conditions in the crust. Specifically, we develop modelling techniques in order to analyse the directional variation of seismic wave speed in the crust and test them at Mt. Asama in Japan and Canterbury, New Zealand. We also implement both active source and noise interferometry to identify velocity variations at Mt. Ruapehu, New Zealand.  Observations of temporal variation of anisotropic seismic velocity parameters at Asama volcano in Japan indicate that there is some process (or processes) affecting anisotropy, attributed to closure of microcracks in the rock as it is subjected to volcanic stress in the crust. To test this assertion, a 3D numerical model is created incorporating volcanic stress, ray tracing and estimation of the anisotropy to produce synthetic shear wave splitting results using a dyke stress model. Anisotropy is calculated in two ways; by considering a basic scenario where crack density is uniform and a case where the strength of anisotropy is related to dry crack closure from deviatoric stress. We find that the approach is sensitive to crack density, crack compliance, and the regional stress field. In the case of dry crack closure, modelled stress conditions produce a much smaller degree of anisotropy than indicated by measurements. We propose that the source of anisotropy changes at Asama is tied to more complex processes that may precipitate from stress changes or other volcanic processes, such as the movement of pore fluid.  We develop a generalised anisotropy inversion model based on the linearised, iterative least-squares inversion technique of Abt and Fischer [2008]. The model is streamlined for use with results from the MFAST automatic shear wave splitting software [Savage et al., 2010]. The method iteratively solves for the best fitting magnitude and orientation of anisotropy in each element of the model space using numerically calculated partial derivatives. The inversion is applied to the Canterbury plains in the region surrounding the Greendale fault, using shear-wave splitting data from the 2010 Darfield earthquake sequence. Crustal anisotropy is resolved down to a depth of 20 km at a spatial resolution of 5 km, with good resolution near the Greendale fault. We identify a lateral variation in anisotropy strength across the Greendale fault, possibly associated with post-seismic stress changes.  We perform active source and noise interferometry at Ruapehu in order to investigate potential seismic velocity changes and assess their use as a possible eruption forecasting method. Six co-located 100 kg ammonium nitrate fuel oil explosives were set off serially at Lake Moawhango, situated approximately 20 km south-east of Mount Ruapehu. Two methods of interferometry, using moving window cross correlation in the time and frequency domains, respectively, were applied to the recorded signal from each explosion pair in order to determine velocity changes from the signal coda waves. We identify possible diurnal velocity variations of ~ 0:7% associated with strain caused by the solid Earth tide. Synthetic testing of velocity variation recoverability was also performed using both methods. Interferometry of noise cross-correlations during the period was also performed using moving window cross correlation in the frequency domain. Analysis of velocity variations in the ZZ, RR and TT component pairs show little coherency. This, combined with results from synthetic testing that show that the frequency domain interferometry technique employed is unstable above velocity variations of 0.1%, indicate that the method may not be suitable for determining velocity variations at Ruapehu.</p>


2021 ◽  
Author(s):  
◽  
Adrian Shelley

<p>This thesis is concerned with scrutinising the source, distribution and detectability of seismic velocity phenomena that may be used as proxies to study conditions in the crust. Specifically, we develop modelling techniques in order to analyse the directional variation of seismic wave speed in the crust and test them at Mt. Asama in Japan and Canterbury, New Zealand. We also implement both active source and noise interferometry to identify velocity variations at Mt. Ruapehu, New Zealand.  Observations of temporal variation of anisotropic seismic velocity parameters at Asama volcano in Japan indicate that there is some process (or processes) affecting anisotropy, attributed to closure of microcracks in the rock as it is subjected to volcanic stress in the crust. To test this assertion, a 3D numerical model is created incorporating volcanic stress, ray tracing and estimation of the anisotropy to produce synthetic shear wave splitting results using a dyke stress model. Anisotropy is calculated in two ways; by considering a basic scenario where crack density is uniform and a case where the strength of anisotropy is related to dry crack closure from deviatoric stress. We find that the approach is sensitive to crack density, crack compliance, and the regional stress field. In the case of dry crack closure, modelled stress conditions produce a much smaller degree of anisotropy than indicated by measurements. We propose that the source of anisotropy changes at Asama is tied to more complex processes that may precipitate from stress changes or other volcanic processes, such as the movement of pore fluid.  We develop a generalised anisotropy inversion model based on the linearised, iterative least-squares inversion technique of Abt and Fischer [2008]. The model is streamlined for use with results from the MFAST automatic shear wave splitting software [Savage et al., 2010]. The method iteratively solves for the best fitting magnitude and orientation of anisotropy in each element of the model space using numerically calculated partial derivatives. The inversion is applied to the Canterbury plains in the region surrounding the Greendale fault, using shear-wave splitting data from the 2010 Darfield earthquake sequence. Crustal anisotropy is resolved down to a depth of 20 km at a spatial resolution of 5 km, with good resolution near the Greendale fault. We identify a lateral variation in anisotropy strength across the Greendale fault, possibly associated with post-seismic stress changes.  We perform active source and noise interferometry at Ruapehu in order to investigate potential seismic velocity changes and assess their use as a possible eruption forecasting method. Six co-located 100 kg ammonium nitrate fuel oil explosives were set off serially at Lake Moawhango, situated approximately 20 km south-east of Mount Ruapehu. Two methods of interferometry, using moving window cross correlation in the time and frequency domains, respectively, were applied to the recorded signal from each explosion pair in order to determine velocity changes from the signal coda waves. We identify possible diurnal velocity variations of ~ 0:7% associated with strain caused by the solid Earth tide. Synthetic testing of velocity variation recoverability was also performed using both methods. Interferometry of noise cross-correlations during the period was also performed using moving window cross correlation in the frequency domain. Analysis of velocity variations in the ZZ, RR and TT component pairs show little coherency. This, combined with results from synthetic testing that show that the frequency domain interferometry technique employed is unstable above velocity variations of 0.1%, indicate that the method may not be suitable for determining velocity variations at Ruapehu.</p>


Sign in / Sign up

Export Citation Format

Share Document