Burial-deformation history of an arcuate fold unraveled by fracture analysis, stylolite paleopiezometry and vein cement geochemistry: a case study in the Cingoli Anticline (Umbria-Marches, northern Apennines)

Author(s):  
Aurélie Labeur ◽  
Nicolas E. Beaudoin ◽  
Olivier Lacombe ◽  
Guilhem Hoareau ◽  
Lorenzo Petraccini ◽  
...  

<p>The timing and duration of fold-related deformation - including layer-parallel shortening (LPS) – related to fold growth, are difficult to estimate because of a lack of data in most natural cases. We propose an original combination of direct and indirect dating methods to reconstruct the burial-deformation history of the Mesozoic carbonates that crop out in the Cingoli Anticline in the Umbria-Marche Apennine Ridge.</p><p>The Cingoli anticline displays an arcuate shape in map view, trending N140 in its northern part and N160 in its southern part). We first study the fracture-stylolite network to characterize the successive stages of deformation. Several sets of mesostructures were discriminated according to their orientation and relative chronology:</p><ul><li>(i) N-S trending vertical joints (after unfolding), likely related to foreland flexure/forebulge development;</li> <li>(ii) N045 trending vertical, bedding and fold-axis perpendicular joints/veins, associated with early folding stylolites with N045-oriented peaks and reverse faulting associated with a N045 σ<sub>1</sub> (after unfolding), reflecting LPS;</li> <li>(iii) bedding-perpendicular and fold axis -parallel joints/veins, e., trending N140 in the northern part and N160 in the southern part of the anticline, reflecting outer-arc extension associated to strata curvature at fold hinge, the variation about 20° in orientation between the northern and southern parts of the fold being consistent with the arcuate shape of the anticline;</li> <li>(iv) tectonic stylolites with horizontal peaks striking N045, along with conjugate vertical strike-slip faults, associated with a horizontal N045 contraction affecting the strata after the fold was locked, corresponding to the late stage of fold tightening (LSFT).</li> </ul><p>These results suggest that the Cingoli anticline developed under a continuous N045 contraction and that its arcuate shape is likely primary and was achieved in relation to the reactivation of an N-S normal fault inherited from the Tethyan rifting, without any vertical-axis rotation of the fold axis.</p><p>We further reconstructed burial curves considering sedimentary formation thicknesses, corrected from physical and chemical compaction. We also quantified the vertical stress experienced by sedimentary stylolites from a roughness inversion technique, allowing derivation of the maximum depth experienced by the strata prior to contraction (using bedding-parallel sedimentary stylolites) and during exhumation (using horizontal sedimentary stylolites related to a post-folding compaction). Oxygen and carbon isotope ratios measured in tectonic vein cements point towards a locally-sourced fluid system with limited vertical migration at the scale of the carbonate core, enabling the use of the absolute temperatures obtained from CO<sub>2</sub> clumped isotope (D<sub>47</sub>) to reconstruct the depth during layer-parallel shortening and folding. The comparison of reconstructed depth at which each deformation phase occurred with the burial curve provides absolute timing for the development and exhumation of the Cingoli Anticline. Together with U-Pb ages of calcite vein cements and fault coatings from the nearby San Vicino Anticline, located west of the Cingoli Anticline, our data suggest that contraction started by ~8 Ma (LPS) and ended by ~3 Ma (LSFT), and that the growth of the Cingoli anticline lasted from ~5.5 to 4 Ma.  </p>

Geosciences ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 135
Author(s):  
Aurélie Labeur ◽  
Nicolas E. Beaudoin ◽  
Olivier Lacombe ◽  
Laurent Emmanuel ◽  
Lorenzo Petracchini ◽  
...  

Unravelling the burial-deformation history of sedimentary rocks is prerequisite information to understand the regional tectonic, sedimentary, thermal, and fluid-flow evolution of foreland basins. We use a combination of microstructural analysis, stylolites paleopiezometry, and paleofluid geochemistry to reconstruct the burial-deformation history of the Meso-Cenozoic carbonate sequence of the Cingoli Anticline (Northern Apennines, central Italy). Four major sets of mesostructures were linked to the regional deformation sequence: (i) pre-folding foreland flexure/forebulge; (ii) fold-scale layer-parallel shortening under a N045 σ1; (iii) syn-folding curvature of which the variable trend between the north and the south of the anticline is consistent with the arcuate shape of the anticline; (iv) the late stage of fold tightening. The maximum depth experienced by the strata prior to contraction, up to 1850 m, was quantified by sedimentary stylolite paleopiezometry and projected on the reconstructed burial curve to assess the timing of the contraction. As isotope geochemistry points towards fluid precipitation at thermal equilibrium, the carbonate clumped isotope thermometry (Δ47) considered for each fracture set yields the absolute timing of the development and exhumation of the Cingoli Anticline: layer-parallel shortening occurred from ~6.3 to 5.8 Ma, followed by fold growth that lasted from ~5.8 to 3.9 Ma.


2020 ◽  
Author(s):  
Giulia Tartaglia ◽  
Giulio Viola ◽  
Alberto Ceccato ◽  
Stefano Bernasconi ◽  
Roelant van der Lelij ◽  
...  

<p>Basement terranes commonly contain complex fault networks developed during repeated episodes of brittle deformation. The Mid-Norwegian margin (from 62 to 63.8 °N) exposes a complexly fractured terrane formed mainly by Caledonian basement rocks. The margin recorded a prolonged brittle deformation history spanning the Devonian to Paleogene time interval. It is characterised by a pervasive NE-SW structural grain due to the ductile-brittle multiphase activity of the Møre-Trøndelag Fault Complex (MTFC).</p><p>In order to develop a time-constrained tectonic model of the area, we applied a multidisciplinary approach combining remote sensing, field work, paleostress inversion, microstructural analysis, mineralogical characterization, clumped isotope thermometry on carbonates and K-Ar dating of fault rocks from key representative faults. We present herein the preliminary structural-geochronological data of a still ongoing study of two regions along the Mid-Norwegian margin, the Hitra-Frøya and Kråkenes-Runde areas. These key areas represent the intersection regions between the Mid-Norwegian- and the other sectors of the margin.</p><p>The brittle structural record of the entire Mid-Norwegian margin was analysed by remote sensing of lineaments using high resolution LiDAR data followed by ground-truthing of the obtained results during field work. Three main sets of lineaments were identified: i) (E)NE-(W)SW-trending lineaments, parallel to the coastline and to the MTFC; ii) N(NW)-S(SE)-trending lineaments; iii) WNW-ESE-trending lineaments. The main sets of faults and fractures were further characterised by their fault rock association and coating. All generations of faults contain thin coatings of chlorite, variably thick epidote and quartz mineralisations and calcite veins and coatings, locally associated with acicular zeolite. Samples of calcite and related gouges were collected from different sets of faults. Carbonate clumped isotope thermometry constrains the range of temperature of calcite growth between 140 and 30 °C, indicating that calcite precipitated at different thermal conditions during a multiphase structural evolution. K-Ar data collected so far from synkinematic illite separated from fault gouges yield Jurassic-Paleogene ages.</p><p>The structural network of the margin is interpreted as reflecting a sequence of different deformation episodes. In order to resolve the orientation of the stress field for each recorded event, we applied paleostress inversion with the Win-Tensor software [1]. The preliminary results suggest that at least three tectonic stages affected the margin. A NE-SW strike-slip dominated transpression possibly reflects the late stages of the Caledonian orogenic cycle. A pure and oblique extensional (E)NE-(W)SW stage is associated with the Jurassic North Sea rifting, followed by a NW-SE Paleogene extensional reactivation observable throughout the margin.</p><p>To conclude, a new multidisciplinary database for the reconstruction of the brittle deformation history of the Mid-Norwegian margin is presented. The proposed approach aims to define the temporal and structural characterisation of each single tectonic episode. Such an approach is also pivotal toward the correlation with the deformation history of the corresponding offshore domains, as well as the comparison in time with other segments of the Norwegian margin.</p><p>[1] Delvaux, D. and Sperner, B. (2003). Stress tensor inversion from fault kinematic indicators and focal mechanism data: the TENSOR program. Geological Society, London, Special Publications, 212: 75-100</p>


Author(s):  
Adi Suryadi

The Kubang Pasu Formation at South of UniMap Stadium Hill has suffered deformation that produced fault with various types and orientations. First deformation (ST1) is southeast – northwest were resulted normal, reverse, dextral and sinistral fault. At station 32, Reverse fault (N940E/480) from ST1 was cut by reverse fault (N480E/400) result of second deformation (ST2). Another cross cutting fault found at station 108, third deformation (ST3) with stress direction from northeast – southwest that produced reverse fault with strike direction N1340E and 680 of dip angle was cutting the reverse fault (N870E/660) from second deformation. The youngest deformation (ST4) has stress from east – west. At station 110, normal fault (N900E/300) is representing the youngest deformation was cutting the reverse fault (N1540E/520) from third deformation.


Author(s):  
J. A. N. Zasadzinski ◽  
R. K. Prud'homme

The rheological and mechanical properties of crosslinked polymer gels arise from the structure of the gel network. In turn, the structure of the gel network results from: thermodynamically determined interactions between the polymer chain segments, the interactions of the crosslinking metal ion with the polymer, and the deformation history of the network. Interpretations of mechanical and rheological measurements on polymer gels invariably begin with a conceptual model of,the microstructure of the gel network derived from polymer kinetic theory. In the present work, we use freeze-etch replication TEM to image the polymer network morphology of titanium crosslinked hydroxypropyl guars in an attempt to directly relate macroscopic phenomena with network structure.


2020 ◽  
Vol 57 (1) ◽  
pp. 21-40
Author(s):  
Alexandra Wallenberg ◽  
Michelle Dafov ◽  
David Malone ◽  
John Craddock

A harzburgite intrusion, which is part of the trailside mafic complex) intrudes ~2900-2950 Ma gneisses in the hanging wall of the Laramide Bighorn uplift west of Buffalo, Wyoming. The harzburgite is composed of pristine orthopyroxene (bronzite), clinopyroxene, serpentine after olivine and accessory magnetite-serpentinite seams, and strike-slip striated shear zones. The harzburgite is crosscut by a hydrothermally altered wehrlite dike (N20°E, 90°, 1 meter wide) with no zircons recovered. Zircons from the harzburgite reveal two ages: 1) a younger set that has a concordia upper intercept age of 2908±6 Ma and a weighted mean age of 2909.5±6.1 Ma; and 2) an older set that has a concordia upper intercept age of 2934.1±8.9 Ma and a weighted mean age 2940.5±5.8 Ma. Anisotropy of magnetic susceptibility (AMS) was used as a proxy for magmatic intrusion and the harzburgite preserves a sub-horizontal Kmax fabric (n=18) suggesting lateral intrusion. Alternating Field (AF) demagnetization for the harzburgite yielded a paleopole of 177.7 longitude, -14.4 latitude. The AF paleopole for the wehrlite dike has a vertical (90°) inclination suggesting intrusion at high latitude. The wehrlite dike preserves a Kmax fabric (n=19) that plots along the great circle of the dike and is difficult to interpret. The harzburgite has a two-component magnetization preserved that indicates a younger Cretaceous chemical overprint that may indicate a 90° clockwise vertical axis rotation of the Clear Creek thrust hanging wall, a range-bounding east-directed thrust fault that accommodated uplift of Bighorn Mountains during the Eocene Laramide Orogeny.


Author(s):  
Adam A. Garde ◽  
Brian Chadwick ◽  
John Grocott ◽  
Cees Swager

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Garde, A. A., Chadwick, B., Grocott, J., & Swager, C. (1997). Metasedimentary rocks, intrusions and deformation history in the south-east part of the c. 1800 Ma Ketilidian orogen, South Greenland: Project SUPRASYD 1996. Geology of Greenland Survey Bulletin, 176, 60-65. https://doi.org/10.34194/ggub.v176.5063 _______________ The south-east part of the c. 1800 Ma Ketilidian orogen in South Greenland (Allaart, 1976) is dominated by strongly deformed and variably migmatised metasedimentary rocks known as the ‘Psammite and Pelite Zones’ (Chadwick & Garde, 1996); the sediments were mainly derived from the evolving Julianehåb batholith which dominates the central part of the orogen. The main purpose of the present contribution is to outline the deformational history of the Psammite Zone in the region between Lindenow Fjord and Kangerluluk (Fig. 2), investigated in 1994 and 1996 as part of the SUPRASYD project (Garde & Schønwandt, 1995 and references therein; Chadwick et al., in press). The Lindenow Fjord region has high alpine relief and extensive ice and glacier cover, and the fjords are regularly blocked by sea ice. Early studies of this part of the orogen were by boat reconnaissance (Andrews et al., 1971, 1973); extensive helicopter support in the summers of 1992 and 1994 made access to the inner fjord regions and nunataks possible for the first time.A preliminary geological map covering part of the area between Lindenow Fjord and Kangerluluk was published by Swager et al. (1995). Hamilton et al. (1996) have addressed the timing of sedimentation and deformation in the Psammite Zone by means of precise zircon U-Pb geochronology. However, major problems regarding the correlation of individual deformational events and their relationship with the evolution of the Julianehåb batholith were not resolved until the field work in 1996. The SUPRASYD field party in 1996 (Fig. 1) was based at the telestation of Prins Christian Sund some 50 km south of the working area (Fig. 2). In addition to base camp personnel, helicopter crew and the four authors, the party consisted of five geologists and M.Sc. students studying mafic igneous rocks and their mineralisation in selected areas (Stendal et al., 1997), and a geologist investigating rust zones and areas with known gold anomalies.


2006 ◽  
Vol 65 (6) ◽  
pp. 429-439 ◽  
Author(s):  
Keisuke Kushiro ◽  
Jun Maruta

Linguistics ◽  
2020 ◽  
Vol 58 (3) ◽  
pp. 745-766
Author(s):  
Elisabeth Stark ◽  
Paul Widmer

AbstractWe discuss a potential case of borrowing in this paper: Breton a- ‘of’, ‘from’ marking of (internal) verbal arguments, unique in Insular Celtic languages, and reminiscent of Gallo-Romance de/du- (and en-) arguments. Looking at potential Gallo-Romance parallels of three Middle Breton constructions analyzed in some detail (a with indefinite mass nominals in direct object position, a-marking of internal arguments under the scope of negation, a [allomorphs an(ez)-/ahan-] with personal pronouns for internal arguments, subjects (mainly of predicative constructions) and as expletive subjects of existential constructions), we demonstrate that even if there are some semantic parallels and one strong structural overlap (a and de under the scope of negation), the amount of divergences in morphology, syntax and semantics and the only partially fitting relative chronology of the different constructions do not allow to conclude with certainty that language-contact is an explanation of the Breton facts, which might have come into being also because of internal change (bound to restructuring of the pronominal system in Breton). More research is necessary to complete our knowledge of a-marking in Middle Breton and Modern Breton varieties and on the precise history of French en, in order to decide for one or the other explanation.


Sign in / Sign up

Export Citation Format

Share Document