The GMAO High‐Resolution Coupled Model and Assimilation System for Seasonal Prediction

Author(s):  
Andrea Molod ◽  

<p>The Global Modeling and Assimilation Office (GMAO) is about to release a new version of the Goddard Earth Observing System (GEOS) Subseasonal to Seasonal prediction (S2S) system, GEOS‐S2S‐3, that represents an improvement in performance and infrastructure over the  previous system, GEOS-S2S-2. The system will be described briefly, highlighting some features unique to GEOS-S2S, such as the coupled interactive aerosol model and ensemble  perturbation strategy and size. Results are presented from forecasts and from climate  equillibrium simulations. GEOS-S2S-3 will be used to produce a long term weakly coupled reanalysis called MERRA-2 Ocean.</p><p>The climate or equillibrium state of the atmosphere and ocean shows a reduction in systematic error relative to GEOS‐S2S‐2, attributed in part to an increase in ocean resolution and to the upgrade in the glacier runoff scheme.  The forecast skill shows improved prediction  of the North Atlantic Oscillation, attributed to the increase in forecast ensemble members.  </p><p>With the release of GEOS-S2S-3 and MERRA-2 Ocean, GMAO will continue its tradition of maintaining a state‐of‐the‐art seasonal prediction system for use in evaluating the impact on seasonal and decadal forecasts of assimilating newly available satellite observations, as well as evaluating additional sources of predictability in the Earth system through the expanded coupling of the Earth system model and assimilation components.</p>

2021 ◽  
Author(s):  
Alba de la Vara ◽  
William Cabos ◽  
Dmitry V. Sein ◽  
Claas Teichmann ◽  
Daniela Jacob

AbstractIn this work we use a regional atmosphere–ocean coupled model (RAOCM) and its stand-alone atmospheric component to gain insight into the impact of atmosphere–ocean coupling on the climate change signal over the Iberian Peninsula (IP). The IP climate is influenced by both the Atlantic Ocean and the Mediterranean sea. Complex interactions with the orography take place there and high-resolution models are required to realistically reproduce its current and future climate. We find that under the RCP8.5 scenario, the generalized 2-m air temperature (T2M) increase by the end of the twenty-first century (2070–2099) in the atmospheric-only simulation is tempered by the coupling. The impact of coupling is specially seen in summer, when the warming is stronger. Precipitation shows regionally-dependent changes in winter, whilst a drier climate is found in summer. The coupling generally reduces the magnitude of the changes. Differences in T2M and precipitation between the coupled and uncoupled simulations are caused by changes in the Atlantic large-scale circulation and in the Mediterranean Sea. Additionally, the differences in projected changes of T2M and precipitation with the RAOCM under the RCP8.5 and RCP4.5 scenarios are tackled. Results show that in winter and summer T2M increases less and precipitation changes are of a smaller magnitude with the RCP4.5. Whilst in summer changes present a similar regional distribution in both runs, in winter there are some differences in the NW of the IP due to differences in the North Atlantic circulation. The differences in the climate change signal from the RAOCM and the driving Global Coupled Model show that regionalization has an effect in terms of higher resolution over the land and ocean.


2016 ◽  
Vol 29 (3) ◽  
pp. 941-962 ◽  
Author(s):  
Thomas L. Delworth ◽  
Fanrong Zeng

Abstract The impact of the North Atlantic Oscillation (NAO) on the Atlantic meridional overturning circulation (AMOC) and large-scale climate is assessed using simulations with three different climate models. Perturbation experiments are conducted in which a pattern of anomalous heat flux corresponding to the NAO is added to the model ocean. Differences between the perturbation experiments and a control illustrate how the model ocean and climate system respond to the NAO. A positive phase of the NAO strengthens the AMOC by extracting heat from the subpolar gyre, thereby increasing deep-water formation, horizontal density gradients, and the AMOC. The flux forcings have the spatial structure of the observed NAO, but the amplitude of the forcing varies in time with distinct periods varying from 2 to 100 yr. The response of the AMOC to NAO variations is small at short time scales but increases up to the dominant time scale of internal AMOC variability (20–30 yr for the models used). The amplitude of the AMOC response, as well as associated oceanic heat transport, is approximately constant as the time scale of the forcing is increased further. In contrast, the response of other properties, such as hemispheric temperature or Arctic sea ice, continues to increase as the time scale of the forcing becomes progressively longer. The larger response is associated with the time integral of the anomalous oceanic heat transport at longer time scales, combined with an increased impact of radiative feedback processes. It is shown that NAO fluctuations, similar in amplitude to those observed over the last century, can modulate hemispheric temperature by several tenths of a degree.


2013 ◽  
Vol 9 (2) ◽  
pp. 871-886 ◽  
Author(s):  
M. Casado ◽  
P. Ortega ◽  
V. Masson-Delmotte ◽  
C. Risi ◽  
D. Swingedouw ◽  
...  

Abstract. In mid and high latitudes, the stable isotope ratio in precipitation is driven by changes in temperature, which control atmospheric distillation. This relationship forms the basis for many continental paleoclimatic reconstructions using direct (e.g. ice cores) or indirect (e.g. tree ring cellulose, speleothem calcite) archives of past precipitation. However, the archiving process is inherently biased by intermittency of precipitation. Here, we use two sets of atmospheric reanalyses (NCEP (National Centers for Environmental Prediction) and ERA-interim) to quantify this precipitation intermittency bias, by comparing seasonal (winter and summer) temperatures estimated with and without precipitation weighting. We show that this bias reaches up to 10 °C and has large interannual variability. We then assess the impact of precipitation intermittency on the strength and stability of temporal correlations between seasonal temperatures and the North Atlantic Oscillation (NAO). Precipitation weighting reduces the correlation between winter NAO and temperature in some areas (e.g. Québec, South-East USA, East Greenland, East Siberia, Mediterranean sector) but does not alter the main patterns of correlation. The correlations between NAO, δ18O in precipitation, temperature and precipitation weighted temperature are investigated using outputs of an atmospheric general circulation model enabled with stable isotopes and nudged using reanalyses (LMDZiso (Laboratoire de Météorologie Dynamique Zoom)). In winter, LMDZiso shows similar correlation values between the NAO and both the precipitation weighted temperature and δ18O in precipitation, thus suggesting limited impacts of moisture origin. Correlations of comparable magnitude are obtained for the available observational evidence (GNIP (Global Network of Isotopes in Precipitation) and Greenland ice core data). Our findings support the use of archives of past δ18O for NAO reconstructions.


2021 ◽  
Vol 14 (5) ◽  
pp. 2635-2657
Author(s):  
Chao Sun ◽  
Li Liu ◽  
Ruizhe Li ◽  
Xinzhu Yu ◽  
Hao Yu ◽  
...  

Abstract. Data assimilation (DA) provides initial states of model runs by combining observational information and models. Ensemble-based DA methods that depend on the ensemble run of a model have been widely used. In response to the development of seamless prediction based on coupled models or even Earth system models, coupled DA is now in the mainstream of DA development. In this paper, we focus on the technical challenges in developing a coupled ensemble DA system, especially how to conveniently achieve efficient interaction between the ensemble of the coupled model and the DA methods. We first propose a new DA framework, DAFCC1 (Data Assimilation Framework based on C-Coupler2.0, version 1), for weakly coupled ensemble DA, which enables users to conveniently integrate a DA method into a model as a procedure that can be directly called by the model ensemble. DAFCC1 automatically and efficiently handles data exchanges between the model ensemble members and the DA method without global communications and does not require users to develop extra code for implementing the data exchange functionality. Based on DAFCC1, we then develop an example weakly coupled ensemble DA system by combining an ensemble DA system and a regional atmosphere–ocean–wave coupled model. This example DA system and our evaluations demonstrate the correctness of DAFCC1 in developing a weakly coupled ensemble DA system and the effectiveness in accelerating an offline DA system that uses disk files as the interfaces for the data exchange functionality.


2020 ◽  
Author(s):  
Charlotte Pascoe ◽  
David Hassell ◽  
Martina Stockhause ◽  
Mark Greenslade

<div>The Earth System Documentation (ES-DOC) project aims to nurture an ecosystem of tools & services in support of Earth System documentation creation, analysis and dissemination. Such an ecosystem enables the scientific community to better understand and utilise Earth system model data.</div><div>The ES-DOC infrastructure for the Coupled Model Intercomparison Project Phase 6 (CMIP6) modelling groups to describe their climate models and make the documentation available on-line has been available for 18 months, and more recently the automatic generation of documentation of every published simulation has meant that every CMIP6 dataset within the Earth System Grid Federation (ESGF) is now immediately connected to the ES-DOC description of the entire workflow that created it, via a “further info URL”.</div><div>The further info URL is a landing page from which all of the relevant CMIP6 documentation relevant to the data may be accessed, including experimental design, model formulation and ensemble description, as well as providing links to the data citation information.</div><div>These DOI landing pages are part of the Citation Service, provided by DKRZ. Data citation information is also available independently through the ESGF Search portal or in the DataCite search or Google’s dataset search. It provides users of CMIP6 data with the formal citation that should accompany any use of the datasets that comprise their analysis.</div><div>ES-DOC services and the Citation Service form a CMIP6 project  collaboration, and depend upon structured documentation provided by the scientific community. Structured scientific metadata has an important role in science communication, however it’s creation and collation exacts a cost in time, energy and attention.  We discuss progress towards a balance between the ease of information collection and the complexity of our information handling structures.</div><div> </div><div>CMIP6: https://pcmdi.llnl.gov/CMIP6/</div><div>ES-DOC: https://es-doc.org/</div><div>Further Info URL: https://es-doc.org/cmip6-ensembles-further-info-url</div><div> <p>Citation Service: http://cmip6cite.wdc-climate.de</p> </div>


2013 ◽  
Vol 9 (4) ◽  
pp. 4553-4598 ◽  
Author(s):  
G. Milzer ◽  
J. Giraudeau ◽  
S. Schmidt ◽  
F. Eynaud ◽  
J. Faust

Abstract. In the present study we investigate dinocyst assemblages in the Trondheimsfjord over the last 25 to 50 yr from three well-dated multi-cores (210Pb and 137Cs) retrieved along the fjord axis. The downcore distribution of the cysts is discussed in view of changes of the key surface water parameters sea-surface temperatures (SSTs) and sea-surface salinities (SSSs) monitored in the fjord, as well as river discharges. We examine the impact of the North Atlantic Oscillation pattern and of waste water supply from the local industry and agriculture on the fjord ecological state and hence dinocyst species diversity. Our results show that dinocyst production and diversity in the fjord is not evidently affected by human-induced eutrophication. Instead the assemblages appear to be mainly controlled by the NAO-related changes in physico-chemical characteristics of the surface mixed layer. Still, discharges of major rivers were modulated, since 1985 by the implementation of hydropower plants which certainly influences the freshwater and nutrient supply into the fjord. The impact, however, is variable according to the local geographical setting, and barely differentiated from natural changes in river run off. We ultimately test the use of the modern analogue technique (MAT) for the reconstruction of winter and summer SSTs and SSSs and annual primary productivity (PP) in this particular fjord setting. The reconstructed data are compared with time-series of SSTs and SSSs measured at 10 m water depth, as well as with mean annual PPs along the Norwegian coast and within Scandinavian fjords. The reconstructions are in general good agreement with the instrumental measurements and observations from other fjords. Major deviations can be addressed to peculiarities in the assemblages linked to the particular fjord setting and the related hydrological structure.


2021 ◽  
Author(s):  
Anni Zhao ◽  
Chris Brierley

<p>Experiment outputs are now available from the Coupled Model Intercomparison Project’s 6<sup>th</sup> phase (CMIP6) and the past climate experiments defined in the Model Intercomparison Project’s 4<sup>th</sup> phase (PMIP4). All of this output is freely available from the Earth System Grid Federation (ESGF). Yet there are overheads in analysing this resource that may prove complicated or prohibitive. Here we document the steps taken by ourselves to produce ensemble analyses covering past and future simulations. We outline the strategy used to curate, adjust the monthly calendar aggregation and process the information downloaded from the ESGF. The results of these steps were used to perform analysis for several of the initial publications arising from PMIP4. We provide post-processed fields for each simulation, such as climatologies and common measures of variability. Example scripts used to visualise and analyse these fields is provided for several important case studies.</p>


2019 ◽  
Vol 32 (19) ◽  
pp. 6491-6511 ◽  
Author(s):  
Hugh S. Baker ◽  
Tim Woollings ◽  
Chris E. Forest ◽  
Myles R. Allen

Abstract The North Atlantic Oscillation (NAO) and eddy-driven jet contain a forced component arising from sea surface temperature (SST) variations. Due to large amounts of internal variability, it is not trivial to determine where and to what extent SSTs force the NAO and jet. A linear statistical–dynamic method is employed with a large climate ensemble to compute the sensitivities of the winter and summer NAO and jet speed and latitude to the SSTs. Key regions of sensitivity are identified in the Indian and Pacific basins, and the North Atlantic tripole. Using the sensitivity maps and a long observational SST dataset, skillful reconstructions of the NAO and jet time series are made. The ability to skillfully forecast both the winter and summer NAO using only SST anomalies is also demonstrated. The linear approach used here allows precise attribution of model forecast signals to SSTs in particular regions. Skill comes from the Atlantic and Pacific basins on short lead times, while the Indian Ocean SSTs may contribute to the longer-term NAO trend. However, despite the region of high sensitivity in the Indian Ocean, SSTs here do not provide significant skill on interannual time scales, which highlights the limitations of the imposed SST approach. Given the impact of the NAO and jet on Northern Hemisphere weather and climate, these results provide useful information that could be used for improved attribution and forecasting.


Sign in / Sign up

Export Citation Format

Share Document