Short-wavelength Bouguer anomaly and active faults in the northeastern Japan arc from the viewpoint of differential geometry

Author(s):  
Mitsuhiro Hirano ◽  
Hiroyuki Nagahama ◽  
Jun Muto

<p>In the northeastern Japan arc with the active compressive stress field since ~3 Ma, it is reported that active faults have a characteristic distribution on the short-wavelength (< 160 km) Bouguer anomalies: Active faults tend to be located in negative regions. It suggests that they do not simply correspond to geologic distributions, and also reflect active crustal deformation in the northeastern Japan arc. Although previous studies proposed that cracks and volumetric strain caused by faulting contribute to negative gravity anomalies, the quantitative effect of active faults on the short-wavelength Bouguer anomalies in the northeastern Japan arc has been unclear in previous studies because of the low resolution of the gravity map. So, we evaluated the quantitative effect of active faults in the northeastern Japan arc using the latest digital datasets for gravity measurements. First, we created a new short-wavelength (< 160 km) Bouguer anomaly map with high spatial resolution and redrew the geologic map to the mass-density distribution map. On our map, active faults are accompanied by negative regions or grooves. The negative regions or grooves with active faults cannot be only explained by the existence of a low mass-density layer (e.g., sedimentary layer) based on the mass distribution map and cylinder's model with a mass-density depending on the depth. We then showed that gravity anomalies due to accumulated cracks and volumetric strain caused by faulting over the past three million years, which is estimated at around -10 mGal, should also be taken into account. Our result indicates accumulated crustal deformation can generate negative gravity anomaly zones along the strain concentration zones, impacting the pattern of short-wavelength Bouguer anomalies throughout in the entire northeastern Japan arc. Moreover, the earthquakes occur near the crustal bending regions in Niigata-Kobe Tectonic zone, which is a strain concentration field. Since active crustal deformation with large dislocation is associated with the curvature of crustal bending, gravity anomalies can be related to the crustal geometry including the curvature. Finally, we would reveal that the relationship between gravity anomaly and crustal deformation originates from the correspondence among differential geometric objects in space-time and material space, and the short-wavelength Bouguer anomalies are the result of its projection.</p>

Geophysics ◽  
1986 ◽  
Vol 51 (5) ◽  
pp. 1127-1140 ◽  
Author(s):  
Paul M. Kieniewicz ◽  
Bruce P. Luyendyk

The Santa Maria Basin in southern California is a lowland bounded on the south by the Santa Ynez River fault and on the northeast by the Little Pine‐Foxen Canyon‐Santa Maria River faults. It contains Neogene sedimentary rocks which rest unconformably on a basement of Cretaceous and older clastic rocks. Analysis of over 4 000 gravity stations obtained from the Defense Mapping Agency suggests that the Bouguer anomaly contains a short‐wavelength component arising from a variable‐density contrast between the basin’s Neogene units and the Cretaceous basement. A three‐dimensional inversion of the short‐wavelength component (constrained by wells drilled to basement) yields a structure model of the basement and the average density of the overlying sediments, assuming that the basement does not contain large‐scale density variations. The density anomalies modeled in the Neogene sediments, showing higher densities in the basin troughs, can be related to diagenetic changes in the silica facies of the Monterey and Sisquoc formations. The basement structure model shows the basin as composed of parallel ridges and troughs, trending west‐northwest and bounded by steep slopes interpreted as fault scarps. The basin is bounded on the west by a north‐south trending slope which may also represent a fault scarp.


2021 ◽  
Author(s):  
Mikhail Kaban ◽  
Alexei Gvishiani ◽  
Roman Sidorov ◽  
Alexei Oshchenko ◽  
Roman Krasnoperov

<p><span>A new model has been developed for the density and thickness of the sedimentary cover in a vast region at the junction of the southern part of the East European Platform, the Pre-Caucasus and some structures adjacent to the south, including the Caucasus. Structure and density of sedimentary basins was studied by employing the approach based on decompensation of gravity anomalies. Decompensative correction for gravity anomalies reduces the effect of deep masses providing compensation of near-surface density anomalies, in contrast to the conventional isostatic or Bouguer anomalies. . The new model of sediments, which implies their thickness and density, gives a more detailed description of the sedimentary thickness and density and reveals new features which were not or differently imaged by previous studies. It helps in better understanding of the origin and evolution of the basins and provides a background for further detailed geological and geophysical studies of the region.</span></p>


2020 ◽  
Author(s):  
Ludovic Jeanniot ◽  
Cedric Thieulot ◽  
Bart Root ◽  
John Naliboff ◽  
Wim Spakman

<p>The mass-density distribution of the Earth drives mantle convection and plate tectonics but is poorly known. We aim to predict gravity fields as a constraint for geodynamical modelling. In order to compute synthetic Earth gravity one must define a spherical geometry filled with a density model. Density models for the whole mantle down to the CMB come from tomographic models which therefore require converting speed waves velocities to density using a scaling factor.</p><p>We use a discretised integration method to compute globally gravity acceleration, gravity anomalies, potential and gradients, in the state of the art finite element code ASPECT.</p><p>Three density models are tested separately: a density field obtained from SL2013 and S40RTS tomographic models for the deep mantle, and the density model CRUST1.0 for the thin upper lithosphere layer. We combine these 3 datasets into one to create a composite model which is compared to the global seismic model LLNL-G3D-JPS of Simmons et al. (2015). We test the sensitivity of gravity prediction on the use of various conversion scaling factors of shear wave velocity to density. We find that the scaling factor profile also has a major impact on gravity prediction.</p><p>Finally, we present early results of the gravity field prediction for two local areas, the Indian-Tibet plate boundary and the Mediterranean Sea. Gravity predictions are compared to satellite gravity.</p>


2021 ◽  
Author(s):  
Assel Akimbekova ◽  
Paolo Mancinelli ◽  
Massimiliano Rinaldo Barchi ◽  
Cristina Pauselli ◽  
Giorgio Minelli

<p>Abstract</p><p> </p><p>In the present study, starting from original measurement stations, we created the Bouguer anomaly map of Southern Italy with a reduction density of 2670 kg m<sup>-3</sup>. We perform a regional gravity modelling at crustal scale along the trace of the CROP-04 (on-shore) and MB6 (off-shore) deep seismic reflection profiles crossing the Southern Apennines and the Southern Tyrrhenian Sea. Along the 320 km-long modelled profile, we investigate crustal-scale sources for the observed gravity anomalies. </p><p>After a compelling review of the published Moho geometries in the area, that were retrieved from either active or passive seismic methods, we test them in the observed gravity field through forward modeling of the Bouguer gravity anomalies. The comparison between the different Moho interpretations shows that the steepness of the subducting slab, the position of the step between the western (Tyrrhenian) and the eastern (Adriatic) Moho and Moho depth represent the main features influencing the observed Bouguer anomalies at crustal scale.</p><p>Finally, we provide a best-fitting model across both onshore and offshore areas. In the proposed best-fitting model, the wide wavelength and strong regional Bouguer anomalies correlate with the geometry of the Moho discontinuity and deep tectonic structures. On the other hand, the small-amplitude oscillations of the gravity anomalies were attributed to the low-density values of the Pliocene-Quaternary deposits both on- (e.g. the Bradanic trough) and off-shore (e.g. recent deposits in the Tyrrhenian sea bottom). Gravity minima correspond to the crustal doubling underneath the Southern Apennines where the Tyrrhenian Moho (~27 km depth) overlies the deeper Adriatic Moho (~50 km depth). The positive trend of the observed anomaly toward NE is related to the shallowing of the Adriatic Moho to depths of ~28 km in the Adriatic. Similarly, towards SW, the observed anomaly follows a positive trend towards the maxima located in the Central Tyrrhenian Sea. We model this trend as representative of crustal thinning and shallowing to values of ~12 km depth of the Tyrrhenian Moho. We also model a crustal transition from geometries and density values typical of a continental crust in the Adriatic domain towards a more oceanic structure and composition in the Tyrrhenian domain. This crustal model locates the westward flexure of the Adriatic Moho, mimicking the subduction of the Adriatic lithosphere beneath the Peri-Tyrrhenian block and locates step between the western (Tyrrhenian) and the eastern (Adriatic) Moho beneath the Apennines range.</p><p>The resulted gravity forward model provide contributions to the tectonic settings understanding of the area by providing a robust crustal model ranging from the Tyrrhenian Sea to the Apulian foreland.</p><p> Finally, we believe that the proposed model can serve as a starting point for future studies investigating the upper crustal geometries in the area and addressing open questions about its relations with seismicity distribution.</p><p> </p>


2018 ◽  
Vol 8 (1) ◽  
pp. 145-153 ◽  
Author(s):  
O.I. Apeh ◽  
E.C. Moka ◽  
V.N. Uzodinma

Abstract Spherical harmonic expansion is a commonly applied mathematical representation of the earth’s gravity field. This representation is implied by the potential coeffcients determined by using elements/parameters of the field observed on the surface of the earth and/or in space outside the earth in the spherical harmonic expansion of the field. International Centre for Gravity Earth Models (ICGEM) publishes, from time to time, Global Gravity Field Models (GGMs) that have been developed. These GGMs need evaluation with terrestrial data of different locations to ascertain their accuracy for application in those locations. In this study, Bouguer gravity anomalies derived from a total of eleven (11) recent GGMs, using sixty sample points, were evaluated by means of Root-Mean-Square difference and correlation coeficient. The Root-Mean-Square differences of the computed Bouguer anomalies from ICGEMwebsite compared to their positionally corresponding terrestrial Bouguer anomalies range from 9.530mgal to 37.113mgal. Additionally, the correlation coe_cients of the structure of the signal of the terrestrial and GGM-derived Bouguer anomalies range from 0.480 to 0.879. It was observed that GECO derived Bouguer gravity anomalies have the best signal structure relationship with the terrestrial data than the other ten GGMs. We also discovered that EIGEN-6C4 and GECO derived Bouguer anomalies have enormous potential to be used as supplements to the terrestrial Bouguer anomalies for Enugu State, Nigeria.


2014 ◽  
Vol 4 (1) ◽  
Author(s):  
L.E. Sjöberg

AbstractTraditional gravimetric geoid determination relies on Stokes’ formula with removal and restoration of the topographic effects. It is shown that this solution is in error of the order of the quasigeoid-to-geoid difference, which is mainly due to incomplete downward continuation (dwc) of gravity from the Earth’s surface to the geoid. A slightly improved estimator, based on the surface Bouguer gravity anomaly, is also biased due to the imperfect harmonic dwc the Bouguer anomaly. Only the third estimator,which uses the (harmonic) surface no-topography gravity anomaly, is consistent with the boundary condition and Stokes’ formula, providing a theoretically correct geoid height. The difference between the Bouguer and no-topography gravity anomalies (on the geoid or in space) is the “secondary indirect topographic effect”, which is a necessary correction in removing all topographic signals.


Geophysics ◽  
1993 ◽  
Vol 58 (12) ◽  
pp. 1785-1791 ◽  
Author(s):  
El‐Sayed M. Abdelrahman ◽  
Hesham M. El‐Araby

The gravity anomaly expression produced by most geologic structures can be represented by a continuous function in both shape (shape factor) and depth variables with an amplitude coefficient related to the mass. Correlation factors between successive least‐squares residual gravity anomalies from a buried vertical cylinder, horizontal cylinder, and sphere are used to determine the shape and depth of the buried geologic structure. For each shape factor value, the depth is determined automatically from the correlation value. The computed depths are plotted against the shape factor representing a continuous correlation curve. The solution for the shape and depth of the buried structure is read at the common intersection of correlation curves. This method can be applied to a Bouguer anomaly profile consisting of a residual component caused by local structure and a regional component. This is a powerful technique for automatically separating the Bouguer data into residual and regional polynomial components. This method is tested on theoretical examples and a field example. In both cases, the results obtained are in good agreement with drilling results.


Geophysics ◽  
1981 ◽  
Vol 46 (9) ◽  
pp. 1304-1313 ◽  
Author(s):  
Ronald A. van Overmeeren

In the savannah belt of central Sudan, near the town of Kosti, a regional geophysical survey has been carried out forming part of a groundwater project. Because of the presence of detectable and significant contrasts in physical properties of the subsoil, integrated use could be made of electrical resistivity, seismic refraction, and gravity methods. In the interpretation of multilayer electrical sounding curves, additional subsurface information such as lithological well descriptions and geophysical well logs is normally a necessity for solving the problems of equivalence. Along a profile in the eastern part of the area studied, where additional subsurface information was scarce, 16 vertical electrical soundings have been made. A preliminary simple mathematical interpretation suggested possibilities for the presence of fresh groundwater in the eastern part of the profile. In order to solve the equivalence problem, seismic refraction work was carried out at some selected places; that yielded additional information on depths to bedrock. These seismic data made possible a unique solution of the electrical sounding curves, from which it could be concluded that all groundwater in the area is saline. Subsequent test drilling confirmed these findings. A regional relative Bouguer anomaly map provided a picture of the general geologic structures and made possible rough estimates of depths to bedrock. In areas where the basement rocks are relatively close to the surface, as is the case with the profile presented, the gravity anomalies cannot be correlated with bedrock relief, because the effect is strongly influenced by lateral density variations within the bedrock itself. This is an example of a case where only an integrated application of several geophysical exploration methods can provide the desired hydrogeologic information in an acceptable balance between reliability and cost.


Sign in / Sign up

Export Citation Format

Share Document