A gravity model of the basement structure in the Santa Maria Basin, California

Geophysics ◽  
1986 ◽  
Vol 51 (5) ◽  
pp. 1127-1140 ◽  
Author(s):  
Paul M. Kieniewicz ◽  
Bruce P. Luyendyk

The Santa Maria Basin in southern California is a lowland bounded on the south by the Santa Ynez River fault and on the northeast by the Little Pine‐Foxen Canyon‐Santa Maria River faults. It contains Neogene sedimentary rocks which rest unconformably on a basement of Cretaceous and older clastic rocks. Analysis of over 4 000 gravity stations obtained from the Defense Mapping Agency suggests that the Bouguer anomaly contains a short‐wavelength component arising from a variable‐density contrast between the basin’s Neogene units and the Cretaceous basement. A three‐dimensional inversion of the short‐wavelength component (constrained by wells drilled to basement) yields a structure model of the basement and the average density of the overlying sediments, assuming that the basement does not contain large‐scale density variations. The density anomalies modeled in the Neogene sediments, showing higher densities in the basin troughs, can be related to diagenetic changes in the silica facies of the Monterey and Sisquoc formations. The basement structure model shows the basin as composed of parallel ridges and troughs, trending west‐northwest and bounded by steep slopes interpreted as fault scarps. The basin is bounded on the west by a north‐south trending slope which may also represent a fault scarp.

1990 ◽  
Vol 112 (4) ◽  
pp. 462-467 ◽  
Author(s):  
Hisashi Matsuda ◽  
Sei-ichi Iida ◽  
Michio Hayakawa

The formation mechanism of streamwise vortices in the near field of the three-dimensional wall jet discharging from a circular nozzle along a flat plate is studied experimentally using a conditional sampling technique. Ensemble-averages of the lateral velocity component indicate the presence of large-scale horseshoe-like structures, whose legs are inclined and stretched to form the streamwise vortices in the mixing region of the jet. Based on the present result, a coherent structure model for the near field of the wall jet is proposed.


2016 ◽  
Vol 811 ◽  
pp. 701-741 ◽  
Author(s):  
W. He ◽  
R. S. Gioria ◽  
J. M. Pérez ◽  
V. Theofilis

Two- and three-dimensional modal and non-modal instability mechanisms of steady spanwise-homogeneous laminar separated flow over airfoil profiles, placed at large angles of attack against the oncoming flow, have been investigated using global linear stability theory. Three NACA profiles of distinct thickness and camber were considered in order to assess geometry effects on the laminar–turbulent transition paths discussed. At the conditions investigated, large-scale steady separation occurs, such that Tollmien–Schlichting and cross-flow mechanisms have not been considered. It has been found that the leading modal instability on all three airfoils is that associated with the Kelvin–Helmholtz mechanism, taking the form of the eigenmodes known from analysis of generic bluff bodies. The three-dimensional stationary eigenmode of the two-dimensional laminar separation bubble, associated in earlier analyses with the formation on the airfoil surface of large-scale separation patterns akin to stall cells, is shown to be more strongly damped than the Kelvin–Helmholtz mode at all conditions examined. Non-modal instability analysis reveals the potential of the flows considered to sustain transient growth which becomes stronger with increasing angle of attack and Reynolds number. Optimal initial conditions have been computed and found to be analogous to those on a cascade of low pressure turbine blades. By changing the time horizon of the analysis, these linear optimal initial conditions have been found to evolve into the Kelvin–Helmholtz mode. The time-periodic base flows ensuing linear amplification of the Kelvin–Helmholtz mode have been analysed via temporal Floquet theory. Two amplified modes have been discovered, having characteristic spanwise wavelengths of approximately 0.6 and 2 chord lengths, respectively. Unlike secondary instabilities on the circular cylinder, three-dimensional short-wavelength perturbations are the first to become linearly unstable on all airfoils. Long-wavelength perturbations are quasi-periodic, standing or travelling-wave perturbations that also become unstable as the Reynolds number is further increased. The dominant short-wavelength instability gives rise to spanwise periodic wall-shear patterns, akin to the separation cells encountered on airfoils at low angles of attack and the stall cells found in flight at conditions close to stall. Thickness and camber have quantitative but not qualitative effect on the secondary instability analysis results obtained.


2018 ◽  
Vol 13 (1) ◽  
pp. 193-198
Author(s):  
Shun Araki ◽  
Tatsuya Noguchi ◽  
Masao Komazawa ◽  
Shoya Arimura ◽  
Mitsuhiro Tamura ◽  
...  

Gravity survey has been carried out around central part of Mashiki, Kumamoto, Japan, where was severely damaged by 2016 Kumamoto earthquake. Dense observations were performed at more than 450 sites around the central part of Mashiki. The observation sites satisfy enough density to discuss density structure shallower than 500-meter depth around the target area. After applying some corrections to the observed data, Bouguer anomaly is obtained and three dimensional model of gravity basement is estimated. As a result, a graben runs parallel to the Akitsukawa River and some isolated small basins are found inside of the graben. The central part of Mashiki is located immediately above of the one of such the small basins. We also analyze focusing and defocusing effects of ray of seismic wave under very simple assumptions and it is found that the central part of Mashiki locates close to a focusing area.


2017 ◽  
Vol 54 (7) ◽  
pp. 798-811 ◽  
Author(s):  
Andrew J. Calvert ◽  
Nathan Hayward ◽  
Rajesh Vayavur ◽  
Maurice Colpron

In 2004, two seismic reflection lines were shot across the Mesozoic Whitehorse trough and adjacent terranes. Three-dimensional first-arrival tomographic inversion is used to constrain lithology to 800–1200 m depth, and surface structures are extrapolated into the middle crust using the coincident reflection data. In the Yukon–Tanana terrane, the metasedimentary Snowcap assemblage is characterized by velocities of 4.5–5.5 km/s, while in Quesnellia, velocities of 5.0–6.0 km/s occur at 500 m depth, and probably represent igneous rocks of the Tatchun batholith. Across the Whitehorse trough, velocities >4.0 km/s correspond to clastic rocks of the Jurassic Laberge and Triassic Lewes River groups; velocities <4.0 km/s probably present the clastic Jurassic to Cretaceous Tantalus Formation. Several near-surface units with velocities of 2.0–3.0 km/s are identified; some correlate well with volcanic rocks of the Upper Cretaceous Carmacks Group, but others could be attributable to alluvial deposits or faulting. The Big Salmon fault is interpreted to dip southwest, implying that rocks of the Yukon–Tanana terrane extend beneath Quesnellia. Stikinia and Quesnellia underlie up to 5–8 km of Triassic to Early Cretaceous sedimentary strata, and appear to be a single allochthon within an 18–20 km deep synform above the Yukon–Tanana terrane, which we name the Northern Intermontane synform. In general, reflection geometries in the upper crust are complex, but are consistent with large-scale imbricate structures that have been dissected into numerous blocks by displacement along moderately to steeply dipping strike-slip faults, which may be part of a crustal-scale flower structure extending to the base of the crust.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1940
Author(s):  
Muhammad Usman Naseer ◽  
Ants Kallaste ◽  
Bilal Asad ◽  
Toomas Vaimann ◽  
Anton Rassõlkin

This paper presents current research trends and prospects of utilizing additive manufacturing (AM) techniques to manufacture electrical machines. Modern-day machine applications require extraordinary performance parameters such as high power-density, integrated functionalities, improved thermal, mechanical & electromagnetic properties. AM offers a higher degree of design flexibility to achieve these performance parameters, which is impossible to realize through conventional manufacturing techniques. AM has a lot to offer in every aspect of machine fabrication, such that from size/weight reduction to the realization of complex geometric designs. However, some practical limitations of existing AM techniques restrict their utilization in large scale production industry. The introduction of three-dimensional asymmetry in machine design is an aspect that can be exploited most with the prevalent level of research in AM. In order to take one step further towards the enablement of large-scale production of AM-built electrical machines, this paper also discusses some machine types which can best utilize existing developments in the field of AM.


2021 ◽  
Vol 104 (1) ◽  
pp. 003685042098705
Author(s):  
Xinran Wang ◽  
Yangli Zhu ◽  
Wen Li ◽  
Dongxu Hu ◽  
Xuehui Zhang ◽  
...  

This paper focuses on the effects of the off-design operation of CAES on the dynamic characteristics of the triple-gear-rotor system. A finite element model of the system is set up with unbalanced excitations, torque load excitations, and backlash which lead to variations of tooth contact status. An experiment is carried out to verify the accuracy of the mathematical model. The results show that when the system is subjected to large-scale torque load lifting at a high rotating speed, it has two stages of relatively strong periodicity when the torque load is light, and of chaotic when the torque load is heavy, with the transition between the two states being relatively quick and violent. The analysis of the three-dimensional acceleration spectrum and the meshing force shows that the variation in the meshing state and the fluctuation of the meshing force is the basic reasons for the variation in the system response with the torque load. In addition, the three rotors in the triple-gear-rotor system studied show a strong similarity in the meshing states and meshing force fluctuations, which result in the similarity in the dynamic responses of the three rotors.


Author(s):  
Leonardo Baglioni ◽  
Federico Fallavollita

AbstractThe present essay investigates the potential of generative representation applied to the study of relief perspective architectures realized in Italy between the sixteenth and seventeenth centuries. In arts, and architecture in particular, relief perspective is a three-dimensional structure able to create the illusion of great depths in small spaces. A method of investigation applied to the case study of the Avila Chapel in Santa Maria in Trastevere in Rome (Antonio Gherardi 1678) is proposed. The research methodology can be extended to other cases and is based on the use of a Relief Perspective Camera, which can create both a linear perspective and a relief perspective. Experimenting mechanically and automatically the perspective transformations from the affine space to the illusory space and vice versa has allowed us to see the case study in a different light.


Sign in / Sign up

Export Citation Format

Share Document