Dynamic evolution of debris flow grain composition

Author(s):  
Yong Li

<p>Debris flow is composed of solid grains of different sizes. the characteristics of grain size distribution reflect the movement mode and dynamic conditions of the fluid, and have different effects on the movement of debris flow. Due to the high variability of debris flow materials, the granular interaction is bound to affect the fluid properties. The grain size distribution (GSD) of debris flow satisfies the formula: P(D)=CD<sup>-μ</sup>exp(-D/D<sub>c</sub>), where, GSD parameters μ and D<sub>c</sub> can comprehensively reflect the change of grain composition. with μ reflecting the structure and variation characteristics of fine grains, and D<sub>c</sub> reflecting the range of grain size. Field surveys in various regions indicate that the GSD parameters are distinct in materials of flow, source, and deposition. The GSD parameters of source soil and deposition soil are random and discrete, while the GSD parameters of fluid samples show obvious negative power function form: D<sub>c</sub>= aμ<sup>b</sup> (Figure 1). This shows that the grain composition of debris flow contains some dynamic information. In this paper, we use natural soil materials in a typical debris flow valley to conduct a series dynamically mixing and rotating experiments to simulate the flow evolution, and explore the change of grains under the action of dynamics and the effect of grain adjustment on the mobility of debris flow. The results show that the GSD shows a significant regularity after dynamic rotation. The specific performance is that μ and D<sub>c</sub> change from the initial random discrete state to negative power correlation (Figure 2), and the appearance of this correlation corresponds to the best mobility of debris flow. At the same time, the Malvern laser grain size analyzer was used to analyze the specific surface area of fine grains (<0.20 mm) in the dynamic rotation experiment. The results show that with the increase of dynamic time, the specific surface area increases according to power law, and when the time reaches about 100 minutes, the growth slows down, and the specific surface area changes little. The experimental results are helpful for a deep understanding of the dynamics of debris flow.</p>

2012 ◽  
Vol 729 ◽  
pp. 344-349 ◽  
Author(s):  
Róbert Géber ◽  
István Kocserha ◽  
László A. Gömze

The aim of the present research work is to examine the influence of mineral composition and grain size distribution on the properties of limestone and dolomite mineral fillers used in Hungarian road construction. Since these properties fundamentally define the features of asphalt pavements, our research goals were assigned accordingly. Different fractions of two mineral fillers (limestone from Alsózsolca and dolomite from Pilisvörösvár) were compared. We have observed deviations in the grain size distribution of some fractions of fillers that were free of contaminations. While limestone consists of a great amount of fines and a relatively small amount of coarse grains, in case of dolomite it is the opposite, that is, small amount of fines and greater amount of coarse grains. The decrease of the grain size of fractions resulted in a slight increase of specific surface area of fillers. We have observed that by the decrease of the grain size of fillers, the hydrophilic coefficient has also decreased. The increasing presence of fines however, resulted in the decrease of the hydrophilic coefficient.


2015 ◽  
Vol 22 (6) ◽  
Author(s):  
Nazile Ural

AbstractIn this study, the relationships between geotechnical index properties and the pore-size distribution of compacted natural silt and artificial soil mixtures, namely, silt with two different clays and three different clay percentages (10%, 20%, and 40%), were examined and compared. Atterberg’s limit tests, standard compaction tests, mercury intrusion porosimetry, X-ray diffraction, scanning electron microscopy (SEM) analysis, and Brunauer-Emmett-Teller specific surface analysis were conducted. The results show that the liquid limit, the cumulative pore volume, and specific surface area of artificially mixed soils increase with an increase in the percentage of clay. The cumulative pore volume and specific surface area with geotechnical index properties were compared. High correlation coefficients were observed between the specific areas and both the liquid limit and the plasticity index, as well as between the cumulative pore volume and both the clay percentage and the


2016 ◽  
Author(s):  
K. Urumović ◽  
K. Urumović Sr.

Abstract. In this paper, the results of permeability and specific surface area analyses as functions of granulometric composition of various sediments (from silty clays to very well-graded gravels) are presented. The effective porosity and the referential grain size are presented as fundamental granulometric parameters expressing an effect of the forces operating on fluid movement through the saturated porous media. This paper suggests procedures for calculating referential grain size and determining effective (flow) porosity, which result in parameters that reliably determine the specific surface area and permeability. These procedures ensure the successful application of the Kozeny–Carman model up to the limits of validity of Darcy’s law. The value of effective porosity in the referential mean grain size function was calibrated within the range of 1.5 μm to 6.0 mm. The reliability of the parameters applied in the KC model was confirmed by a very high correlation between the predicted and tested hydraulic conductivity values (R2=0.99 for sandy and gravelly materials; R2=0.70 for clayey-silty materials). The group representation of hydraulic conductivity (ranging from 10–12 m/s up to 10–2 m/s) presents a coefficient of correlation of R2=0.97 for a total of 175 samples of various deposits. These results present new developments in the research of the effective porosity, the permeability and the specific surface area distributions of porous materials. This is important because these three parameters are critical conditions for successful groundwater flow modeling and contaminant transport. Additionally, from a practical viewpoint, it is very important to identify these parameters swiftly and very accurately.


2007 ◽  
Vol 336-338 ◽  
pp. 2017-2020 ◽  
Author(s):  
Fan Yong Ran ◽  
Wen Bin Cao ◽  
Yan Hong Li ◽  
Xiao Ning Zhang

Nanosize anatase TiO2 powders have been synthesized by hydrothermal synthesis by using technical grade TiOSO4 as precursor and urea as precipitating agent. The initial pressure of the reaction system was set at 6 MPa. Stirring speed was fixed at 300r/min. The reaction system reacted at the temperature ranged from 110 to 150°C for holding 2hrs to 8hrs and the concentration of the precursor was ranged from 0.25M to1.5M. XRD patterns show that the synthesized powders are in the form of anatase phase. Calculated grain size is ranged from 6.7 to 8.9nm by Scherrer method from the line broadening of the (101) diffraction peak of anatase. The specific surface area of the powders synthesized under different conditions is ranged from 124 to 240m2/g. The grain size of the powders increases with the increase of the reaction temperature, holding time and precursor concentration, respectively. The specific surface area decreases with the increase of reaction temperature and holding time, and does not obviously change with the change of precursor concentration when the concentration of the precursor is less than 1M. However, when the concentration is higher than 1M, the specific surface area will decrease quickly with the increase of the precursor concentration. XRD and DSC-TG analysis shows that the synthesized anatase TiO2 will begin to transform to rutile TiO2 at about 840°C. When heated to 1000°C for holding 1h, the anatase powders will transform to rutile completely.


Landslides ◽  
2019 ◽  
Vol 16 (3) ◽  
pp. 515-522
Author(s):  
Taiqiang Yang ◽  
Yong Li ◽  
Qishu Zhang ◽  
Yu Jiang

2019 ◽  
Vol 11 (19) ◽  
pp. 2280 ◽  
Author(s):  
Alexander Kokhanovsky ◽  
Maxim Lamare ◽  
Olaf Danne ◽  
Carsten Brockmann ◽  
Marie Dumont ◽  
...  

The Sentinel Application Platform (SNAP) architecture facilitates Earth Observation data processing. In this work, we present results from a new Snow Processor for SNAP. We also describe physical principles behind the developed snow property retrieval technique based on the analysis of Ocean and Land Colour Instrument (OLCI) onboard Sentinel-3A/B measurements over clean and polluted snow fields. Using OLCI spectral reflectance measurements in the range 400–1020 nm, we derived important snow properties such as spectral and broadband albedo, snow specific surface area, snow extent and grain size on a spatial grid of 300 m. The algorithm also incorporated cloud screening and atmospheric correction procedures over snow surfaces. We present validation results using ground measurements from Antarctica, the Greenland ice sheet and the French Alps. We find the spectral albedo retrieved with accuracy of better than 3% on average, making our retrievals sufficient for a variety of applications. Broadband albedo is retrieved with the average accuracy of about 5% over snow. Therefore, the uncertainties of satellite retrievals are close to experimental errors of ground measurements. The retrieved surface grain size shows good agreement with ground observations. Snow specific surface area observations are also consistent with our OLCI retrievals. We present snow albedo and grain size mapping over the inland ice sheet of Greenland for areas including dry snow, melted/melting snow and impurity rich bare ice. The algorithm can be applied to OLCI Sentinel-3 measurements providing an opportunity for creation of long-term snow property records essential for climate monitoring and data assimilation studies—especially in the Arctic region, where we face rapid environmental changes including reduction of snow/ice extent and, therefore, planetary albedo.


RSC Advances ◽  
2018 ◽  
Vol 8 (17) ◽  
pp. 9320-9326
Author(s):  
Q. Y. Yang ◽  
H. L. Zhou ◽  
M. T. Xie ◽  
P. P. Ma ◽  
Z. S. Zhu ◽  
...  

The combustion process of GOA, and the specific surface area and pore size distribution of P-RGO are shown in the images.


Sign in / Sign up

Export Citation Format

Share Document