Hortonian Surface Runoff, Hillslope Form and Energy Dynamics, can we read the fingerprints?

Author(s):  
Samuel Schroers ◽  
Erwin Zehe

<p>Since Horton’s famous reinterpretation of Playfair’s law hydrologists have marvelled over the organization of drainage networks in catchments and on hillslopes. We start at the cross junction of hillslope hydraulics and geomorphology, trying to interpret the formation of hydraulic networks and erosion alike and wondering why movement of fluid creates structure at all.</p><p>In its most basic form structure and form has been explained as the result of optimization, either of certain types of energy such as free energy or its thermodynamic counterpart entropy. Research has shown that river networks and river junctions tend to minimize dissipation of kinetic energy and it has been suggested that simultaneously other forms of free energy, such as sediment transport tend to increase along the flow path. Studies have focused on hydraulic networks on the hillslope scale as well as on the catchment scale. Surprisingly little attention has been given to the question why these networks exists in the first place and why discharge confluences towards the catchment outlet.</p><p>In the first part of our study we put Hortonian surface runoff into a thermodynamic framework and derive the energy balance for steady state runoff. We derive the equations on the hillslope scale, where we observe the transition from evenly distributed potential energy (the rainfall) to spatially organized discharge in micro rills to larger rills and gullies. In hydraulic terms we distinguish between sheet- and rill flow. We then apply Manning-Strickler’s equation to estimate the distribution of hydraulic variables and compare energy conversion rates on typical 1D hillslope profiles for sheet- and rill flow. Interestingly, we find that only certain hillslope forms lead to spatial maxima of stream power.</p><p>In the second part of the study we extend the energy balance to transient flow and analyse power maxima during typical rainfall-runoff events. Finally, we relate our findings to observable, measurable hydraulic structures such as rill systems and estimate past work on sediments. We believe that current energy dynamics of surface runoff reflects past optimization and therefore holds potential for the understanding of landscape evolution and surface runoff contributions alike.</p>

2012 ◽  
Vol 16 (3) ◽  
pp. 649-669 ◽  
Author(s):  
G. H. de Rooij

Abstract. The increasing importance of catchment-scale and basin-scale models of the hydrological cycle makes it desirable to have a simple, yet physically realistic model for lateral subsurface water flow. As a first building block towards such a model, analytical solutions are presented for horizontal groundwater flow to surface waters held at prescribed water levels for aquifers with parallel and radial flow. The solutions are valid for a wide array of initial and boundary conditions and additions or withdrawals of water, and can handle discharge into as well as lateral infiltration from the surface water. Expressions for the average hydraulic head, the flux to or from the surface water, and the aquifer-scale hydraulic conductivity are developed to provide output at the scale of the modelled system rather than just point-scale values. The upscaled conductivity is time-variant. It does not depend on the magnitude of the flux but is determined by medium properties as well as the external forcings that drive the flow. For the systems studied, with lateral travel distances not exceeding 10 m, the circular aquifers respond very differently from the infinite-strip aquifers. The modelled fluxes are sensitive to the magnitude of the storage coefficient. For phreatic aquifers a value of 0.2 is argued to be representative, but considerable variations are likely. The effect of varying distributions over the day of recharge damps out rapidly; a soil water model that can provide accurate daily totals is preferable over a less accurate model hat correctly estimates the timing of recharge peaks.


2014 ◽  
Vol 71 ◽  
pp. 125-139 ◽  
Author(s):  
Rodica Curtu ◽  
Ricardo Mantilla ◽  
Morgan Fonley ◽  
Luciana K. Cunha ◽  
Scott J. Small ◽  
...  

2013 ◽  
Vol 44 (6) ◽  
pp. 995-1012 ◽  
Author(s):  
Rajesh R. Shrestha ◽  
Karsten Osenbrück ◽  
Michael Rode

This study uses a high-frequency discharge and nitrate concentration dataset from the Weida catchment in Germany for the catchment scale hydrologic response analysis. Nitrate transport in the catchment is mostly conservative as indicated by the nitrate stable isotope (δ15N and δ18O) analysis. Discharge–nitrate concentration data from the catchment show distinctive patterns, suggesting flushing and dilution response. A self-organizing feature map-based methodology was employed to identify such patterns or cluster in the datasets. Based on knowledge of the catchment conditions and prevailing understanding of discharge–nitrate concentration relationship, the clusters were characterized into five qualitative flow responses: (1) baseflow; (2) subsurface flow increase; (3) surface runoff increase; (4) surface runoff recession; and (5) subsurface flow decrease. Such qualitative flowpaths were used as soft data for a multi-objective calibration of a hydrological model (WaSiM-ETH). The calibration led to a reasonable simulation of overall discharge (Nash–Sutcliffe coefficient: 0.84) and qualitative flowpaths (76% agreement). A prerequisite for using such methodology is limited biogeochemical transformation of nitrate (such as denitrification).


2021 ◽  
Author(s):  
Martin Le Mesnil ◽  
Jean-Baptiste Charlier ◽  
Roger Moussa ◽  
Yvan Caballero

<p>We propose a data-driven approach of concentration-discharge (C-Q) relationship analysis, including a new classification of C-Q hysteresis loop at the catchment scale, combined to a simulation of lateral Q and C at the reach scale. We analyse high-frequency, multiple-site records of Q and electrical conductivity (EC) in karst catchment outlets, in which EC informs on water residence time. At the catchment scale, contributions of pre-event water (PEW) and event water (EW) during storm events are investigated through hysteresis loops analysis, which allows inferring hydrological processes. Our new classification of hysteresis loops is based on loop mean slope and hysteresis index. At the reach scale, lateral Q and EC are simulated using a diffusive wave equation model, providing a more spatialized picture of PEW and EW contributions to streamflow during storm events. The methodology is applied to two catchments (Loue river and Cèze river) in France, including 8 gauging stations with hourly Q and EC time series covering 66 storm events.</p><p>For both catchments, a conceptual model of water origin and hydrological-processes seasonal and spatial variability is drawn. Regarding Loue catchment, summer and fall storm-events are characterized by contribution of PEW through piston-type flows, whereas decreasing EC values in winter and spring storm-events indicate the major contribution of EW through surface runoff and following fast infiltration in karst. EW contribution is increasing towards downstream. Regarding Cèze catchment, higher contributions of EW are observed, indicating that fast infiltration and surface runoff are the dominant processes, associated to a PEW signature in summer and fall. PEW contribution also increases in karstified areas. Intra-site water origin seasonality is mostly related to karst aquifer saturation state, whereas inter-site variability is linked to karst areas extension. These results are encouraging to extend this approach to a variety of sites, notably influenced by important surface water/groundwater interactions, and groundwater flooding.</p>


2021 ◽  
Author(s):  
Ondrej Hotovy ◽  
Michal Jenicek

<p>Seasonal snowpack significantly influences the catchment runoff and thus represents an important input for the hydrological cycle. Changes in the precipitation distribution and intensity, as well as a shift from snowfall to rain is expected in the future due to climate changes. As a result, rain-on-snow events, which are considered to be one of the main causes of floods in winter and spring, may occur more frequently. Heat from liquid precipitation constitutes one of the snowpack energy balance components. Consequently, snowmelt and runoff may be strongly affected by these temperature and precipitation changes.</p><p>The objective of this study is 1) to evaluate the frequency, inter-annual variability and extremity of rain-on-snow events in the past based on existing measurements together with an analysis of changes in the snowpack energy balance, and 2) to simulate the effect of predicted increase in air temperature on the occurrence of rain-on-snow events in the future. We selected 40 near-natural mountain catchments in Czechia with significant snow influence on runoff and with available long-time series (>35 years) of daily hydrological and meteorological variables. A semi-distributed conceptual model, HBV-light, was used to simulate the individual components of the water cycle at a catchment scale. The model was calibrated for each of study catchments by using 100 calibration trials which resulted in respective number of optimized parameter sets. The model performance was evaluated against observed runoff and snow water equivalent. Rain-on-snow events definition by threshold values for air temperature, snow depth, rain intensity and snow water equivalent decrease allowed us to analyze inter-annual variations and trends in rain-on-snow events during the study period 1965-2019 and to explain the role of different catchment attributes.</p><p>The preliminary results show that a significant change of rain-on-snow events related to increasing air temperature is not clearly evident. Since both air temperature and elevation seem to be an important rain-on-snow drivers, there is an increasing rain-on-snow events occurrence during winter season due to a decrease in snowfall fraction. In contrast, a decrease in total number of events was observed due to the shortening of the period with existing snow cover on the ground. Modelling approach also opened further questions related to model structure and parameterization, specifically how individual model procedures and parameters represent the real natural processes. To understand potential model artefacts might be important when using HBV or similar bucket-type models for impact studies, such as modelling the impact of climate change on catchment runoff.</p>


2018 ◽  
Vol 246 ◽  
pp. 01099
Author(s):  
Jun Yin ◽  
Zhe Yuan ◽  
Run Wang

The projection of surface runoff in the context of climate change is important to the rational utilization and distribution of water resources. This study did a case study in regions above Danjiangkou in Hanjiang River Basin. A basin scale hydrological model was built based on macroscale processes of surface runoff and water-energy balance. This model can describe the quantity relationship among climatic factors, underlying surface and surface runoff. Driven by hypothetical climatic scenarios and climate change dataset coming from CMIP5, the climate change impacts on surface runoff in the regions above Danjiangkou in Hanjiang River Basin can be addressed. The results showed that: (1) Compared with other distributed hydrological models, the hydrological model in this study has fewer parameters and simpler calculation methods. The model was good at simulating annual surface runoff. (2) The surface runoff was less sensitivity to climate change in the regions above Danjiangkou in Hanjiang River Basin. A 1°C increase in temperature might results in a surface runoff decrease of 2~5% and a 10% precipitation increase might result in a streamflow increase of 14~17%. (3) The temperature across the Fu River Basin were projected to increase by 1.4~2.3°C in 1961 to 1990 compared with that in 1961 to 1990. But the uncertainty existed among the projection results of precipitation. The surface runoff was excepted to decrease by 1.3~23.9% without considering the climate change projected by NorESM1-M and MIROC-ESM-CHEM, which was much different from other GCMs.


2012 ◽  
Vol 43 (4) ◽  
pp. 531-546 ◽  
Author(s):  
A. Alaoui ◽  
P. Spiess ◽  
M. Beyeler ◽  
R. Weingartner

The main aims of this study were to identify and characterize the flow processes at the plot scale, and to up-scale these processes at the catchment scale by Terrain Analysis, using Digital Elevation Models (TauDEMs) based on in-situ sprinkling experiments. To calibrate the TauDEM-based method at the plot scale, in-situ sprinkling experiments were carried out on two plot scales (16 m2 divided into 16 plots of 1 m2 on various slopes). The marked differences in the textural and structural porosities between forest and grassland soil appear to control runoff processes. While grassland soils were characterized by a variable subsurface flow depending mainly on field slope, deep percolation was mainly found in forest soils. In addition, the map of flow directions also shows that two factors play an important role: on the one hand, the spatial sequence of the areas with a predisposition to surface runoff, and on the other, the tortuosity and length of channels that enhance the cumulative water volume in the target outlets. When based on sprinkling experiments, the TauDEM-based method provides more quantitative information on the dynamic of flow at the catchment scale. Furthermore, additional investigations are needed to validate the calculations of flow at a larger scale.


2002 ◽  
Vol 35 (13) ◽  
pp. 5331-5333
Author(s):  
Harry J. Ploehn
Keyword(s):  

2008 ◽  
Vol 57 (5) ◽  
pp. 741-746 ◽  
Author(s):  
N Bertrand ◽  
B Jefferson ◽  
P Jeffrey

With the growth of urban areas and climate change, decisions need to be taken to improve water management. This paper reports an assessment of the impact of greywater recycling systems on catchment scale hydrological flows. A simulation model developed in InfoWorks CS (Wallingford Software Ltd) was used to evaluate how river flows, sewer flows, surface runoff and flooding events may be influenced when grey water recycling systems of different number and scale are implemented in a representative catchment. The simulations show the effectiveness of greywater recycling systems in reducing total wastewater volume and flood volume. However, no hydraulic impacts due to implementation of greywater was identified by the model.


Sign in / Sign up

Export Citation Format

Share Document