Drift of individual marine floating debris and clusters of debris, incl. waste materials incl. plastics: translational and rotational dynamics of rigid and deformable bodies at the sea surface 

Author(s):  
Anne Vallette ◽  
François-Régis Martin-Lauzer

<p>The first version of the Litter -TEP (Thematic Exploitation Platform), which was developed by ARGANS Ltd on a grant of the Copernicus Marine Environment monitoring service (CMEMS), aimed at forecasting litter introduction by rivers and marine drift on the European North-Western Shelf (NWS) so as to help local coastal communities schedule beach cleansing and assess the potential origin of materials collected. It relies on the classic approximation that the pieces or patches of litter are passively transported like Lagrangian floats by currents, whether largescale, mesoscale, sub-mesoscale, Eckman, tides, Stokes drift, the elusive Langmuir circulation…</p><p>Yet, windage, i.e. the effect of wind on items with a freeboard, is often more critical than transport by currents. To stay in the ‘Lagrangian Particle Tracking’ framework, but correct the discrepancy between ground-truth and drift speed’s and direction’s forecast, windage has been grossly modelled in the Litter TEP as if we had an enhanced ocean surface layer drift which affects similarly all floating litter. Yet, neither ocean transport nor this modelling allows to reproduce the formation of litter rows. Hence the current study: coming back to the basics of classical mechanics (Newton-Euler equations for translations & rotations of rigid bodies) we have performed simulation of marine debris’ dynamics at the interface between i. the turbulent atmospheric surface layer (ASL) which is at the bottom of the atmospheric boundary layer (ABL), and ii. the wave breaking layer (WBL) which tops the wave-affected-surface-layer (WASL) within the turbulent ocean boundary layer (OBL), in maturing wave fields (wave age <1) in the open ocean, that are characterized by wind gusts, wave crest breaking and spray. The classic framework for the drift of flotsam, by which wind-induced drag force exerted on objects floating on the sea surface causes motion relative to ocean currents (i.e. leeway drift), and vice-versa, is obviously right; but that it reaches an equilibrium stationary state between the wind-induced drag force and current-induced one on the floating objects in a relatively short timescale proves wrong. In various situations a litter piece will constantly change its attitude and settings in the water, yet reaching a +/- time-invariant time state (but not time-independent) though chaotic. In short: if litter pieces “sail”, it is without Control & Command. The litter drift, i.e. motion from source to sink, might therefore be drastically different from usual views, temporarily by orders of magnitude, and on the long run by factors 2 to 3.</p><p>For a proper assessment of the behavior of litter pieces, one needs precise modelling of wind profiles above the waves in a non-equilibrium boundary layer (wind gusts above the wave crests and counter wind in the troughs), of wave breaking that creates shock dynamics (surf, immersion and/or flight), of sea spray that batters the litter pieces, and .</p><p>Our modelling applies to rigid bodies lighters, cans, wood…, and shall be extended to deformable bodies for algae, plastic bags…, as well as entangled debris that are +/- linked together. We look for partners to perform scaled physical experiments in tanks.</p>

2008 ◽  
Vol 38 (10) ◽  
pp. 2121-2144 ◽  
Author(s):  
Vladimir Kudryavtsev ◽  
Victor Shrira ◽  
Vladimir Dulov ◽  
Vladimir Malinovsky

Abstract The vertical structure of wind-driven sea surface currents and the role of wind-wave breaking in its formation are investigated by means of both field experiments and modeling. Analysis of drifter measurements of surface currents in the uppermost 5-m layer at wind speeds from 3 to 15 m s−1 is the experimental starting point of this study. The velocity gradients beneath the surface are found to be 2 to 5 times weaker than in the “wall” boundary layer. Surface wind drift (identified via drift of an artificial slick) with respect to 0.5-m depths is about 0.7%, which is even less than the velocity defect over the molecular sublayer in the wall boundary layer at a smooth surface. To interpret the data, a semiempirical model describing the effect of wave breaking on wind-driven surface currents and subsurface turbulence is proposed. The model elaborates on the idea of direct injection of momentum and energy from wave breaking (including microscale breaking) into the water body. Momentum and energy transported by breaking waves into the water significantly enhance the turbulent mixing and considerably decrease velocity shears as compared to the wall boundary layer. No “artificial” surface roughness scale is needed in the model. From the experimental fact of the existence of cool temperature skin at the sea surface, it is deduced that there is a molecular sublayer at the water side of the sea surface with a thickness that depends on turbulence intensity just beneath the surface. The model predictions are consistent with the reported and other available experimental data.


1993 ◽  
Vol 251 ◽  
pp. 109-148 ◽  
Author(s):  
S. E. Belcher ◽  
J. C. R. Hunt

We investigate the changes to a fully developed turbulent boundary layer caused by the presence of a two-dimensional moving wave of wavelength L = 2π/k and amplitude a. Attention is focused on small slopes, ak, and small wave speeds, c, so that the linear perturbations are calculated as asymptotic sequences in the limit (u* + c)/UB(L) → 0 (u* is the unperturbed friction velocity and UB(L) is the approach-flow mean velocity at height L). The perturbations can then be described by an extension of the four-layer asymptotic structure developed by Hunt, Leibovich & Richards (1988) to calculate the changes to a boundary layer passing over a low hill.When (u* + c)/UB(L) is small, the matched height, zm (the height where UB equals c), lies within an inner surface layer, where the perturbation Reynolds shear stress varies only slowly. Solutions across the matched height are then constructed by considering an equation for the shear stress. The importance of the shear-stress perturbation at the matched height implies that the inviscid theory of Miles (1957) is inappropriate in this parameter range. The perturbations above the inner surface layer are not directly influenced by the matched height and the region of reversed flow below zm: they are similar to the perturbations due to a static undulation, but the ‘effective roughness length’ that determines the shape of the unperturbed velocity profile is modified to zm = z0 exp (kc/u*).The solutions for the perturbations to the boundary layer are used to calculate the growth rate of waves, which is determined at leading order by the asymmetric pressure perturbation induced by the thickening of the perturbed boundary layer on the leeside of the wave crest. At first order in (u* + c)/UB(L), however, there are three new effects which, numerically, contribute significantly to the growth rate, namely: the asymmetries in both the normal and shear Reynolds stresses associated with the leeside thickening of the boundary layer, and asymmetric perturbations induced by the varying surface velocity associated with the fluid motion in the wave; further asymmetries induced by the variation in the surface roughness along the wave may also be important.


2020 ◽  
Vol 8 (7) ◽  
pp. 497
Author(s):  
Taekyun Kim ◽  
Jae-Hong Moon

It has been identified that there are several limitations in the Mellor–Yamada (MY) turbulence model applied to the atmospheric mixed layer, and Nakanishi and Niino proposed an improved MY model using a database for large-eddy simulations. The improved MY model (Mellor–Yamada–Nakanishi–Niino model; MYNN model) is popular in atmospheric applications; however, it is rarely used in oceanic applications. In this study, the MY model and the MYNN model are compared to identify the efficiency of the MYNN model incorporated into an ocean general circulation model. To investigate the impact of the improved MY model on the vertical mixing in the oceanic boundary layer, the response of the East/Japan Sea to Typhoon Maemi in 2003 was simulated. After the typhoon event, the sea surface temperature obtained from the MYNN model showed better agreement with the satellite measurements than those obtained from the MY model. The MY model produced an extremely shallow mixed layer, and consequently, the surface temperatures were excessively warm. Furthermore, the near-inertial component of the velocity simulated using the MY model was larger than that simulated using the MYNN model at the surface layer. However, in the MYNN model, the near-inertial waves became larger than those simulated by the MY model at all depths except the surface layer. Comparatively, the MYNN model showed enhanced vertical propagation of the near-inertial activity from the mixed layer into the deep ocean, which results in a temperature decrease at the sea surface and a deepening of the mixed layer.


2021 ◽  
pp. 103513
Author(s):  
Dmitrii A. Kremenchutskii ◽  
Gennady F. Batrakov ◽  
Illarion I. Dovhyi ◽  
Yury A. Sapozhnikov

2019 ◽  
Vol 9 (1) ◽  
pp. 127-132
Author(s):  
D. Zhao ◽  
Z. Gong ◽  
J. Feng

Abstract For the modelling and determination of the Earth’s external gravity potential as well as its second-order radial derivatives in the space near sea surface, the surface layer integral method was discussed in the paper. The reasons for the applicability of the method over sea surface were discussed. From the original integral formula of disturbing potential based on the surface layer method, the expression of the radial component of the gravity gradient tensor was derived. Furthermore, an identity relation was introduced to modify the formula in order to reduce the singularity problem. Numerical experiments carried out over the marine area of China show that, the modi-fied surface layer integral method effectively improves the accuracy and reliability of the calculation of the second-order radial gradient component of the disturbing potential near sea surface.


2021 ◽  
Vol 9 (3) ◽  
pp. 264
Author(s):  
Shanti Bhushan ◽  
Oumnia El Fajri ◽  
Graham Hubbard ◽  
Bradley Chambers ◽  
Christopher Kees

This study evaluates the capability of Navier–Stokes solvers in predicting forward and backward plunging breaking, including assessment of the effect of grid resolution, turbulence model, and VoF, CLSVoF interface models on predictions. For this purpose, 2D simulations are performed for four test cases: dam break, solitary wave run up on a slope, flow over a submerged bump, and solitary wave over a submerged rectangular obstacle. Plunging wave breaking involves high wave crest, plunger formation, and splash up, followed by second plunger, and chaotic water motions. Coarser grids reasonably predict the wave breaking features, but finer grids are required for accurate prediction of the splash up events. However, instabilities are triggered at the air–water interface (primarily for the air flow) on very fine grids, which induces surface peel-off or kinks and roll-up of the plunger tips. Reynolds averaged Navier–Stokes (RANS) turbulence models result in high eddy-viscosity in the air–water region which decays the fluid momentum and adversely affects the predictions. Both VoF and CLSVoF methods predict the large-scale plunging breaking characteristics well; however, they vary in the prediction of the finer details. The CLSVoF solver predicts the splash-up event and secondary plunger better than the VoF solver; however, the latter predicts the plunger shape better than the former for the solitary wave run-up on a slope case.


2007 ◽  
Vol 19 (1) ◽  
pp. 015405 ◽  
Author(s):  
Alexey S Mironov ◽  
Vladimir A Dulov
Keyword(s):  

2014 ◽  
Vol 142 (11) ◽  
pp. 4284-4307 ◽  
Author(s):  
Natalie Perlin ◽  
Simon P. de Szoeke ◽  
Dudley B. Chelton ◽  
Roger M. Samelson ◽  
Eric D. Skyllingstad ◽  
...  

Abstract The wind speed response to mesoscale SST variability is investigated over the Agulhas Return Current region of the Southern Ocean using the Weather Research and Forecasting (WRF) Model and the U.S. Navy Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) atmospheric model. The SST-induced wind response is assessed from eight simulations with different subgrid-scale vertical mixing parameterizations, validated using Quick Scatterometer (QuikSCAT) winds and satellite-based sea surface temperature (SST) observations on 0.25° grids. The satellite data produce a coupling coefficient of sU = 0.42 m s−1 °C−1 for wind to mesoscale SST perturbations. The eight model configurations produce coupling coefficients varying from 0.31 to 0.56 m s−1 °C−1. Most closely matching QuikSCAT are a WRF simulation with the Grenier–Bretherton–McCaa (GBM) boundary layer mixing scheme (sU = 0.40 m s−1 °C−1), and a COAMPS simulation with a form of Mellor–Yamada parameterization (sU = 0.38 m s−1 °C−1). Model rankings based on coupling coefficients for wind stress, or for curl and divergence of vector winds and wind stress, are similar to that based on sU. In all simulations, the atmospheric potential temperature response to local SST variations decreases gradually with height throughout the boundary layer (0–1.5 km). In contrast, the wind speed response to local SST perturbations decreases rapidly with height to near zero at 150–300 m. The simulated wind speed coupling coefficient is found to correlate well with the height-averaged turbulent eddy viscosity coefficient. The details of the vertical structure of the eddy viscosity depend on both the absolute magnitude of local SST perturbations, and the orientation of the surface wind to the SST gradient.


Sign in / Sign up

Export Citation Format

Share Document