The influence of hydrothermal alteration on volcano stability: a case study of La Soufrière de Guadeloupe (France)

Author(s):  
Michael Heap ◽  
Tobias Baumann ◽  
Marina Rosas-Carbajal ◽  
Jean-Christophe Komorowski ◽  
H. Albert Gilg ◽  
...  

<p>Volcanoes are inherently unstable structures that spread and frequently experience mass wasting events (such as slope failure, rockfalls, and debris flows). Hydrothermal alteration, common to many volcanoes, is often invoked as a mechanism that contributes significantly to volcano instability. We present here a study that combines laboratory deformation experiments, geophysical data, and large-scale numerical modelling to better understand the influence of hydrothermal alteration on volcano stability. La Soufrière de Guadeloupe (France) is a hazardous andesitic volcano that hosts a large hydrothermal system and therefore represents an ideal natural laboratory for our study. Uniaxial and triaxial deformation experiments were performed on samples prepared from 17 variably-altered (alteration minerals include quartz, cristobalite, tridymite, hematite, pyrite, alunite, natro-alunite, gypsum, kaolinite, and talc) blocks collected from La Soufrière de Guadeloupe. Our uniaxial compressive strength experiments show that strength and Young’s modulus decrease as a function of increasing porosity and increasing alteration. Triaxial deformation experiments show that cohesion decreases as a function of increasing alteration, but that the angle of internal friction does not change systematically. We first combined recent muon tomography data with our laboratory data to create a 3D strength map of La Soufrière de Guadeloupe. The low-strength zone beneath the southern flank of the volcano exposed by our 3D strength map is coincident with the hydrothermal system. We then assigned laboratory-scale and upscaled mechanical properties (e.g., Young’s modulus, cohesion, and angle of internal friction) to zones identified by a recent electrical survey of the dome of La Soufrière de Guadeloupe. Numerical modelling (using the software LaMEM) was then performed on a cross-section of the volcano informed by the recent electrical data, and on a cross-section in which we artificially increased the size of the hydrothermally altered zone. Our modelling shows (1) the importance of using upscaled values in large-scale models and (2) that hydrothermal alteration significantly increases the surface velocity and strain rate of the volcanic slope. We therefore conclude, using models informed by experimental data, that hydrothermal alteration decreases volcano stability and thus expedites volcano spreading and increases the likelihood of mass wasting events and associated volcanic hazards. Hydrothermal alteration, and its evolution, should therefore be monitored at active volcanoes worldwide.</p>

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Chuang Wang ◽  
Jinyu Dong ◽  
Zhiquan Huang ◽  
Jianjun Zhou ◽  
Jihong Yang

The sand and cobble stratum is a kind of mechanically unstable stratum. Shield machine often encounter problems such as difficulty in excavation, cutterhead wear, and poor slag discharge of the spiral dumper while constructing in this kind of stratum. Considering the complexly and variety of the material composition and structure of this stratum, the sand and cobble stratum in China, Chengdu Subway Line 7, Chadianzi-Yipintianxia Station, was selected to conduct indoor large-scale direct shear tests to systematically study the effects of cobble content (CC) on the shear strength and shear properties of sand and cobble soil. The test results showed that the shear strength and angle of internal friction of sand and cobble soil nonlinearly increased with CC, and the shear strength and angle of internal friction slightly increased when CC was less than 40%. The shear strength and angle of internal friction of sand and cobble soil significantly increased after CC reaching 40%. The shear stress-shear displacement curve has three stages, including the elastic deformation stage, yield stage, and hardening stage. The CC had a control effect on the strength and deformation characteristics of sand and cobble soil. The shear stress-displacement curve of sand and cobble soils with CCs of 20% and 80% can be fitted as an exponential model, while the shear stress shear displacement curves of sand and cobble soils with CCs of 40% and 60% are hyperbolic. For sand and cobble soil with same CC, the larger the vertical stress is, the larger the normal displacement is.


1991 ◽  
Vol 15 ◽  
pp. 73-80 ◽  
Author(s):  
Björn Erlingsson

The role of internal forces in determining the geometrical properties of local features such as leads and ridges in sea ice has been investigated. A description of the horizontal stress distribution in a granular material subject to two-dimensional deformations has been derived. The description yields expressions for the propagation of deformation characteristics in a granular deformation field with constant angle of internal friction. The characteristics are mathematical singularities interpreted as trajectories of constant state variables, e.g. ice concentration or ice thickness typified as leads, fractures, pressure and shear ridges. The derived descriptions are used to study the geometrical nature of curving and rectilinear lead patterns frequently observed in sea-ice deformation fields. An expression for the relationship between the arching (tangent angling) of characteristics and relative increase in shear (maximum shear stress) along them is derived. It is explained how the acute angle between large-scale rectilinear characteristics is related to the important mechanical property of the deformed material, the angle of internal friction. It is outlined how the derived results can be applied to study the horizontal distribution of internal forces in sea ice by using imagery data and stress measurements at one site only.


1991 ◽  
Vol 15 ◽  
pp. 73-80 ◽  
Author(s):  
Björn Erlingsson

The role of internal forces in determining the geometrical properties of local features such as leads and ridges in sea ice has been investigated. A description of the horizontal stress distribution in a granular material subject to two-dimensional deformations has been derived. The description yields expressions for the propagation of deformation characteristics in a granular deformation field with constant angle of internal friction. The characteristics are mathematical singularities interpreted as trajectories of constant state variables, e.g. ice concentration or ice thickness typified as leads, fractures, pressure and shear ridges. The derived descriptions are used to study the geometrical nature of curving and rectilinear lead patterns frequently observed in sea-ice deformation fields. An expression for the relationship between the arching (tangent angling) of characteristics and relative increase in shear (maximum shear stress) along them is derived. It is explained how the acute angle between large-scale rectilinear characteristics is related to the important mechanical property of the deformed material, the angle of internal friction. It is outlined how the derived results can be applied to study the horizontal distribution of internal forces in sea ice by using imagery data and stress measurements at one site only.


2016 ◽  
Vol 53 (1) ◽  
pp. 5-28 ◽  
Author(s):  
Grace Ford ◽  
David Pyles ◽  
Marieke Dechesne

A continuous window into the fluvial-lacustrine basin-fill succession of the Uinta Basin is exposed along a 48-mile (77-kilometer) transect up the modern Green River from Three Fords to Sand Wash in Desolation Canyon, Utah. In ascending order the stratigraphic units are: 1) Flagstaff Limestone, 2) lower Wasatch member of the Wasatch Formation, 3) middle Wasatch member of the Wasatch Formation, 4) upper Wasatch member of the Wasatch Formation, 5) Uteland Butte member of the lower Green River Formation, 6) lower Green River Formation, 7) Renegade Tongue of the lower Green River Formation, 8) middle Green River Formation, and 9) the Mahogany oil shale zone marking the boundary between the middle and upper Green River Formations. This article uses regional field mapping, geologic maps, photographs, and descriptions of the stratigraphic unit including: 1) bounding surfaces, 2) key upward stratigraphic characteristics within the unit, and 3) longitudinal changes along the river transect. This information is used to create a north-south cross section through the basin-fill succession and a detailed geologic map of Desolation Canyon. The cross section documents stratigraphic relationships previously unreported and contrasts with earlier interpretations in two ways: 1) abrupt upward shifts in the stratigraphy documented herein, contrast with the gradual interfingering relationships proposed by Ryder et al., (1976) and Fouch et al., (1994), 2) we document fluvial deposits of the lower and middle Wasatch to be distinct and more widespread than previously recognized. In addition, we document that the Uteland Butte member of the lower Green River Formation was deposited in a lacustrine environment in Desolation Canyon. Two large-scale (member-scale) upward patterns are noted: Waltherian, and non-Waltherian. The upward successions in Waltherian progressions record progradation or retrogradation of a linked fluvial-lacustrine system across the area; whereas the upward successions in non-Waltherian progressions record large-scale changes in the depositional system that are not related to progradation or retrogradation of the ancient lacustrine shoreline. Four Waltherian progressions are noted: 1) the Flagstaff Limestone to lower Wasatch Formation member records the upward transition from lacustrine to fluvial—or shallowing-upward succession; 2) the upper Wasatch to Uteland Butte records the upward transition from fluvial to lacustrine—or a deepening upward succession; 3) the Uteland Butte to Renegade Tongue records the upward transition from lacustrine to fluvial—a shallowing-upward succession; and 4) the Renegade Tongue to Mahogany oil shale interval records the upward transition from fluvial to lacustrine—a deepening upward succession. The two non-Waltherian progressions in the study area are: 1) the lower to middle Wasatch, which records the abrupt shift from low to high net-sand content fluvial system, and 2) the middle to upper Wasatch, which records the abrupt shift from high to intermediate net-sand content fluvial system.


Author(s):  
Renato C. Zambon ◽  
Mario T. L. Barros ◽  
Paulo S. F. Barbosa ◽  
Alberto L. Francato ◽  
João Eduardo G. Lopes ◽  
...  

2004 ◽  
Vol 31 (3) ◽  
pp. 319 ◽  
Author(s):  
Jane Catherine Kitson

Sooty shearwaters (tītī, muttonbird, Puffinus griseus) are highly abundant migratory seabirds, which return to breeding colonies in New Zealand. The Rakiura Māori annual chick harvest on islands adjacent to Rakiura (Stewart Island), is one of the last large-scale customary uses of native wildlife in New Zealand. This study aimed to establish whether the rate at which muttonbirders can extract chicks from their breeding burrows indicates population trends of sooty shearwaters. Harvest rates increased slightly with increasing chick densities on Putauhinu Island. Birders' harvest rates vary in their sensitivities to changing chick density. Therefore a monitoring panel requires careful screening to ensure that harvest rates of the birders selected are sensitive to chick density, and represents a cross-section of different islands. Though harvest rates can provide only a general index of population change, it can provide an inexpensive and feasible way to measure population trends. Detecting trends is the first step to assessing the long-term sustainability of the harvest.


2021 ◽  
Author(s):  
Silvano Fortunato Dal Sasso ◽  
Alonso Pizarro ◽  
Sophie Pearce ◽  
Ian Maddock ◽  
Matthew T. Perks ◽  
...  

<p>Optical sensors coupled with image velocimetry techniques are becoming popular for river monitoring applications. In this context, new opportunities and challenges are growing for the research community aimed to: i) define standardized practices and methodologies; and ii) overcome some recognized uncertainty at the field scale. At this regard, the accuracy of image velocimetry techniques strongly depends on the occurrence and distribution of visible features on the water surface in consecutive frames. In a natural environment, the amount, spatial distribution and visibility of natural features on river surface are continuously challenging because of environmental factors and hydraulic conditions. The dimensionless seeding distribution index (SDI), recently introduced by Pizarro et al., 2020a,b and Dal Sasso et al., 2020, represents a metric based on seeding density and spatial distribution of tracers for identifying the best frame window (FW) during video footage. In this work, a methodology based on the SDI index was applied to different study cases with the Large Scale Particle Image Velocimetry (LSPIV) technique. Videos adopted are taken from the repository recently created by the COST Action Harmonious, which includes 13 case study across Europe and beyond for image velocimetry applications (Perks et al., 2020). The optimal frame window selection is based on two criteria: i) the maximization of the number of frames and ii) the minimization of SDI index. This methodology allowed an error reduction between 20 and 39% respect to the entire video configuration. This novel idea appears suitable for performing image velocimetry in natural settings where environmental and hydraulic conditions are extremely challenging and particularly useful for real-time observations from fixed river-gauged stations where an extended number of frames are usually recorded and analyzed.</p><p> </p><p><strong>References </strong></p><p>Dal Sasso S.F., Pizarro A., Manfreda S., Metrics for the Quantification of Seeding Characteristics to Enhance Image Velocimetry Performance in Rivers. Remote Sensing, 12, 1789 (doi: 10.3390/rs12111789), 2020.</p><p>Perks M. T., Dal Sasso S. F., Hauet A., Jamieson E., Le Coz J., Pearce S., …Manfreda S, Towards harmonisation of image velocimetry techniques for river surface velocity observations. Earth System Science Data, https://doi.org/10.5194/essd-12-1545-2020, 12(3), 1545 – 1559, 2020.</p><p>Pizarro A., Dal Sasso S.F., Manfreda S., Refining image-velocimetry performances for streamflow monitoring: Seeding metrics to errors minimisation, Hydrological Processes, (doi: 10.1002/hyp.13919), 1-9, 2020.</p><p>Pizarro A., Dal Sasso S.F., Perks M. and Manfreda S., Identifying the optimal spatial distribution of tracers for optical sensing of stream surface flow, Hydrology and Earth System Sciences, 24, 5173–5185, (10.5194/hess-24-5173-2020), 2020.</p>


Sign in / Sign up

Export Citation Format

Share Document