The Brewer-Dobson circulation in CMIP6

Author(s):  
Natalia Calvo ◽  
Marta Abalos ◽  
Samuel Benito-Barca ◽  
Hella Garny ◽  
Steven Hardiman ◽  
...  

<div> <div> <div> <p>The Brewer-Dobson circulation (BDC) is a key feature of the stratosphere that models need to accurately represent in order to improve the representation of surface climate variability. For the first time, the Climate Model Intercomparison Project includes in its phase 6 (CMIP6) a set of diagnostics that allow for careful evaluation of the BDC. Here, the BDC is evaluated against observations and reanalyses using historical simulations. CMIP6 results confirm the well-known inconsistency in BDC trends between observations and models in the middle and upper stratosphere. The increasing CO2 simulations feature a robust acceleration of the BDC but also reveal large uncertainties in the deep branch trends. The very close connection between the shallow branch and surface temperature is highlighted, which is absent in the deep branch. The trends in mean age of air are shown to be more robust throughout the stratosphere than those in the residual circulation.</p> </div> </div> </div>

2021 ◽  
Author(s):  
Marta Abalos ◽  
Natalia Calvo ◽  
Samuel Benito-Barca ◽  
Hella Garny ◽  
Steven C. Hardiman ◽  
...  

Abstract. The Brewer-Dobson circulation (BDC) is a key feature of the stratosphere that models need to accurately represent in order to improve the representation of surface climate variability. For the first time, the Climate Model Intercomparison Project includes in its phase 6 (CMIP6) a set of diagnostics that allow for careful evaluation of the BDC. Here, the BDC is evaluated against observations and reanalyses using historical simulations. CMIP6 results confirm the well-known inconsistency in BDC trends between observations and models in the middle and upper stratosphere. The increasing CO2 simulations feature a robust acceleration of the BDC but also reveal large uncertainties in the deep branch trends. The very close connection between the shallow branch and surface temperature is highlighted, which is absent in the deep branch. The trends in mean age of air are shown to be more robust throughout the stratosphere than those in the residual circulation. The paper reflects the current knowledge and main uncertainties regarding the BDC.


2021 ◽  
Vol 21 (17) ◽  
pp. 13571-13591
Author(s):  
Marta Abalos ◽  
Natalia Calvo ◽  
Samuel Benito-Barca ◽  
Hella Garny ◽  
Steven C. Hardiman ◽  
...  

Abstract. The Brewer–Dobson circulation (BDC) is a key feature of the stratosphere that models need to accurately represent in order to simulate surface climate variability and change adequately. For the first time, the Climate Model Intercomparison Project includes in its phase 6 (CMIP6) a set of diagnostics that allow for careful evaluation of the BDC. Here, the BDC is evaluated against observations and reanalyses using historical simulations. CMIP6 results confirm the well-known inconsistency in the sign of BDC trends between observations and models in the middle and upper stratosphere. Nevertheless, the large uncertainty in the observational trend estimates opens the door to compatibility. In particular, when accounting for the limited sampling of the observations, model and observational trend error bars overlap in 40 % of the simulations with available output. The increasing CO2 simulations feature an acceleration of the BDC but reveal a large spread in the middle-to-upper stratospheric trends, possibly related to the parameterized gravity wave forcing. The very close connection between the shallow branch of the residual circulation and surface temperature is highlighted, which is absent in the deep branch. The trends in mean age of air are shown to be more robust throughout the stratosphere than those in the residual circulation.


2015 ◽  
Vol 11 (3) ◽  
pp. 605-618 ◽  
Author(s):  
C. M. Brierley

Abstract. Following reconstructions suggesting weakened temperature gradients along the Equator in the early Pliocene, there has been much speculation about Pliocene climate variability. A major advance for our knowledge about the later Pliocene has been the coordination of modelling efforts through the Pliocene Model Intercomparison Project (PlioMIP). Here the changes in interannual modes of sea surface temperature variability will be presented across PlioMIP. Previously, model ensembles have shown little consensus in the response of the El Niño–Southern Oscillation (ENSO) to imposed forcings – either for the past or future. The PlioMIP ensemble, however, shows surprising agreement, with eight models simulating reduced variability and only one model indicating no change. The Pliocene's robustly weaker ENSO also saw a shift to lower frequencies. Model ensembles focussed on a wide variety of forcing scenarios have not yet shown this level of coherency. Nonetheless, the PlioMIP ensemble does not show a robust response of either ENSO flavour or sea surface temperature variability in the tropical Indian and North Pacific oceans. Existing suggestions linking ENSO properties to to changes in zonal temperature gradient, seasonal cycle and the elevation of the Andes Mountains are investigated, yet prove insufficient to explain the consistent response. The reason for this surprisingly coherent signal warrants further investigation.


2016 ◽  
Vol 12 (8) ◽  
pp. 1591-1599 ◽  
Author(s):  
J. C. Hargreaves ◽  
J. D. Annan

Abstract. The mid-Pliocene Warm Period (mPWP) is the most recent interval in which atmospheric carbon dioxide was substantially higher than in modern pre-industrial times. It is, therefore, a potentially valuable target for testing the ability of climate models to simulate climates warmer than the pre-industrial state. The recent Pliocene Model Intercomparison Project (PlioMIP) presented boundary conditions for the mPWP and a protocol for climate model experiments. Here we analyse results from the PlioMIP and, for the first time, discuss the potential for this interval to usefully constrain the equilibrium climate sensitivity. We observe a correlation in the ensemble between their tropical temperature anomalies at the mPWP and their equilibrium sensitivities. If the real world is assumed to also obey this relationship, then the reconstructed tropical temperature anomaly at the mPWP can in principle generate a constraint on the true sensitivity. Directly applying this methodology using available data yields a range for the equilibrium sensitivity of 1.9–3.7 °C, but there are considerable additional uncertainties surrounding the analysis which are not included in this estimate. We consider the extent to which these uncertainties may be better quantified and perhaps lessened in the next few years.


2014 ◽  
Vol 10 (5) ◽  
pp. 3787-3820 ◽  
Author(s):  
C. M. Brierley

Abstract. Following proxy observations of weakened temperature gradients along the Equator in the early Pliocene, there has been much speculation about Pliocene climate variability. A major advance for our knowledge about the later Pliocene has been the coordination of modelling efforts through the Pliocene Model Intercomparison Project (PlioMIP). Here the changes in interannual modes of sea surface temperature variability will be presented across PlioMIP. Previously model ensembles have shown little consensus in the response of the El Niño–Southern Oscillation (ENSO) to imposed forcings – either for the past or future. The PlioMIP ensemble, however, shows surprising agreement with eight models simulating reduced variability and only one model indicating no change. The Pliocene's robustly weaker ENSO also saw a shift to lower frequencies. Model ensembles focussed at a wide variety of forcing scenarios have not yet shown this level of coherency. Nonetheless the PlioMIP ensemble does not show a robust response of either ENSO flavour or sea surface temperature variability in the Tropical Indian and North Pacific Oceans. Existing suggestions of ENSO properties linked to changes in zonal temperature gradient, seasonal cycle and the elevation of the Andes Mountains are investigated, yet prove insufficient to explain the coherent response. The reason for this surprisingly coherent signal warrants further investigation.


2016 ◽  
Author(s):  
Davide Zanchettin ◽  
Myriam Khodri ◽  
Claudia Timmreck ◽  
Matthew Toohey ◽  
Anja Schmidt ◽  
...  

Abstract. The enhancement of the stratospheric aerosol layer by volcanic eruptions induces a complex set of responses causing global and regional climate effects on a broad range of timescales. Uncertainties exist regarding the climatic response to strong volcanic forcing identified in coupled climate simulations that contributed to the fifth phase of the Climate Model Intercomparison Project (CMIP5). In order to better understand the sources of these model diversities, the model intercomparison project on the climate response to volcanic forcing (VolMIP) has defined a coordinated set of idealized volcanic perturbation experiments to be carried out in alignment with the CMIP6 protocol. VolMIP provides a common stratospheric aerosol dataset for each experiment to eliminate differences in the applied volcanic forcing, and defines a set of initial conditions to determine how internal climate variability contributes to determining the response. VolMIP will assess to what extent volcanically-forced responses of the coupled ocean-atmosphere system are robustly simulated by state-of-the-art coupled climate models and identify the causes that limit robust simulated behavior, especially differences in the treatment of physical processes. This paper illustrates the design of the idealized volcanic perturbation experiments in the VolMIP protocol and describes the common aerosol forcing input datasets to be used.


2011 ◽  
Vol 4 (4) ◽  
pp. 3047-3065
Author(s):  
R. S. Smith

Abstract. FAMOUS is an ocean-atmosphere general circulation model of low resolution, based on version 4.5 of the UK MetOffice Unified Model. Here we update the model description to account for changes in the model as it is used in the CMIP5 EMIC model intercomparison project (EMICmip) and a number of other studies. Most of these changes correct errors found in the code. The EMICmip version of the model (XFXWB) has a better-conserved water budget and additional cooling in some high latitude areas, but otherwise has a similar climatology to previous versions of FAMOUS. A variant of XFXWB is also described, with changes to the dynamics at the top of the model which improve the model climatology (XFHCC).


2010 ◽  
Vol 10 (7) ◽  
pp. 16837-16860 ◽  
Author(s):  
T. Birner ◽  
H. Bönisch

Abstract. Transport into the extratropical lowermost stratosphere (LMS) can be divided into a slow part (time-scale of several months to years) associated with the global-scale stratospheric residual circulation and a fast part (time-scale of days to a few months) associated with (mostly quasi-horizontal) mixing (i.e. two-way irreversible transport, including stratosphere-troposphere exchange). The stratospheric residual circulation can be considered to consist of two branches: a deep branch more strongly associated with planetary waves breaking in the middle to upper stratosphere, and a shallow branch more strongly associated with synoptic-scale waves breaking in the subtropical lower stratosphere. In this study the contribution due to the stratospheric residual circulation alone to transport into the LMS is quantified using residual circulation trajectories, i.e. trajectories driven by the (time-dependent) residual mean meridional and vertical velocities. This contribution represents the advective part of the overall transport into the LMS and can be viewed as providing a background onto which the effect of mixing has to be added. Residual mean velocities are obtained from a comprehensive chemistry-climate model as well as from reanalysis data. Transit times of air traveling from the tropical tropopause to the LMS along the residual circulation streamfunction are evaluated and compared to recent mean age of air estimates. A clear time-scale separation with much smaller transit times into the mid-latitudinal LMS than into polar LMS is found that is indicative of a clear separation of the shallow from the deep branch of the residual circulation. This separation between the shallow and the deep circulation branch is further manifested in a clear distinction in the aspect ratio of the vertical to meridional extent of the trajectories as well as the integrated mass flux along the residual circulation trajectories. The residual transit time distribution reproduces qualitatively the observed seasonal cycle of youngest air in the extratropical LMS in fall and oldest air in spring.


2016 ◽  
Vol 9 (9) ◽  
pp. 3461-3482 ◽  
Author(s):  
Brian C. O'Neill ◽  
Claudia Tebaldi ◽  
Detlef P. van Vuuren ◽  
Veronika Eyring ◽  
Pierre Friedlingstein ◽  
...  

Abstract. Projections of future climate change play a fundamental role in improving understanding of the climate system as well as characterizing societal risks and response options. The Scenario Model Intercomparison Project (ScenarioMIP) is the primary activity within Phase 6 of the Coupled Model Intercomparison Project (CMIP6) that will provide multi-model climate projections based on alternative scenarios of future emissions and land use changes produced with integrated assessment models. In this paper, we describe ScenarioMIP's objectives, experimental design, and its relation to other activities within CMIP6. The ScenarioMIP design is one component of a larger scenario process that aims to facilitate a wide range of integrated studies across the climate science, integrated assessment modeling, and impacts, adaptation, and vulnerability communities, and will form an important part of the evidence base in the forthcoming Intergovernmental Panel on Climate Change (IPCC) assessments. At the same time, it will provide the basis for investigating a number of targeted science and policy questions that are especially relevant to scenario-based analysis, including the role of specific forcings such as land use and aerosols, the effect of a peak and decline in forcing, the consequences of scenarios that limit warming to below 2 °C, the relative contributions to uncertainty from scenarios, climate models, and internal variability, and long-term climate system outcomes beyond the 21st century. To serve this wide range of scientific communities and address these questions, a design has been identified consisting of eight alternative 21st century scenarios plus one large initial condition ensemble and a set of long-term extensions, divided into two tiers defined by relative priority. Some of these scenarios will also provide a basis for variants planned to be run in other CMIP6-Endorsed MIPs to investigate questions related to specific forcings. Harmonized, spatially explicit emissions and land use scenarios generated with integrated assessment models will be provided to participating climate modeling groups by late 2016, with the climate model simulations run within the 2017–2018 time frame, and output from the climate model projections made available and analyses performed over the 2018–2020 period.


2016 ◽  
Vol 12 (7) ◽  
pp. 1519-1538 ◽  
Author(s):  
Harry Dowsett ◽  
Aisling Dolan ◽  
David Rowley ◽  
Robert Moucha ◽  
Alessandro M. Forte ◽  
...  

Abstract. The mid-Piacenzian is known as a period of relative warmth when compared to the present day. A comprehensive understanding of conditions during the Piacenzian serves as both a conceptual model and a source for boundary conditions as well as means of verification of global climate model experiments. In this paper we present the PRISM4 reconstruction, a paleoenvironmental reconstruction of the mid-Piacenzian ( ∼  3 Ma) containing data for paleogeography, land and sea ice, sea-surface temperature, vegetation, soils, and lakes. Our retrodicted paleogeography takes into account glacial isostatic adjustments and changes in dynamic topography. Soils and lakes, both significant as land surface features, are introduced to the PRISM reconstruction for the first time. Sea-surface temperature and vegetation reconstructions are unchanged but now have confidence assessments. The PRISM4 reconstruction is being used as boundary condition data for the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2) experiments.


Sign in / Sign up

Export Citation Format

Share Document