Hydrological functioning of irrigated maize crops in southwest France using Eddy Covariance measurements and a land surface model

Author(s):  
Oluwakemi Dare-Idowu ◽  
Lionel Jarlan ◽  
Aurore Brut ◽  
Valerie Le-Dantec ◽  
Vincent Rivalland ◽  
...  

<p>This study aims to analyze the main components of the energy and hydric budgets of irrigated maize in southwestern France. To this objective, the ISBA-A-gs (<span>Interactions between Soil, Biosphere, and Atmosphere) </span>is run over six maize growing seasons. As a preliminary step, the ability of the ISBA-A-gs model to predict the different terms of the energy and water budgets is assessed thanks to a large database of <em>in situ</em> measurements by comparing the single budget version of the model with the new Multiple Energy Balance version solving an energy budget separately for the soil and the vegetation. The <em>in situ</em> data set acquired at the Lamasquere site (43.48<sup>o</sup> N, 1.249<sup>o</sup> E) includes half-hourly measurements of sensible (H) and latent heat fluxes (LE) estimated by an Eddy Covariance system. Measurements also include net radiation (Rn), ground heat flux (G), plant transpiration with sap flow sensors, meteorological variables, and 15-days measurements of vegetation characteristics. The seasonal dynamics of the turbulent fluxes were properly reproduced by both configurations of the model with an R² ranging from 0.66 to 0.89, and a root mean square error lower than 48 W m<sup>-2</sup>. Statistical metrics showed that H was better predicted by MEB with R² of 0.80 in comparison to ISBA-Ags (0.73). However, the difference between the RMSE of ISBA-Ags and MEB during the well-developed stage of the plants for both H and LE does not exceed 8 W m<sup>-2</sup>. This implies that MEB only has a significant added value over ISBA-Ags when the soil and the canopy are not fully coupled, and over a heterogeneous field. Furthermore, this study made a comparison between the sap flow measurements and the transpiration simulated by ISBA-A-gs and MEB. A good dynamics was reproduced by ISBA-A-gs and MEB, although, MEB (R²= 0.91) provided a slightly more realistic estimation of the vegetation transpiration. Consequently, this study investigated the dynamics of the water budget during the growing maize seasons. Results indicated that drainage is almost null on the site, while the observed values of cumulative evapotranspiration that was higher than the water inputs are related to a shallow ground table that provides supplement water to the crop. This work provides insight into the modeling of water and energy exchanges over maize crops and opens perspectives for better water management of the crop in the future.</p>

2011 ◽  
Vol 15 (2) ◽  
pp. 647-666 ◽  
Author(s):  
C. Szczypta ◽  
J.-C. Calvet ◽  
C. Albergel ◽  
G. Balsamo ◽  
S. Boussetta ◽  
...  

Abstract. An evaluation of the global ECMWF atmospheric reanalysis ERA-Interim (with a 0.5° grid) is performed over France, based on the high resolution (8 km) SAFRAN atmospheric reanalysis. The ERA-Interim precipitation, Incoming Solar Radiation (ISR), air temperature, air humidity, and wind speed, are compared with their SAFRAN counterparts. Also, interpolated in situ ISR observations are used in order to consolidate the evaluation of this variable. The daily precipitation estimates produced by ERA-Interim over France correlate very well with SAFRAN. However, the values are underestimated by 27%. A GPCP-corrected version of ERA-Interim is less biased (13%). The ERA-Interim estimates of ISR correlate very well with SAFRAN and with in situ observations on a daily basis. Whereas SAFRAN underestimates the ISR by 6 Wm−2, ERA-Interim overestimates the ISR by 10 Wm−2. In order to assess the impact of the ERA-Interim errors, simulations of the ISBA-A-gs land surface model are performed over the SMOSREX grassland site in southwestern France using ERA-Interim (with and without GPCP rescaling) and SAFRAN. Latent and sensible heat fluxes are simulated, together with carbon dioxide fluxes. The rescaled ERA-Interim performs better than the original ERA-Interim and permits to achieve flux scores similar to those obtained with SAFRAN.


2012 ◽  
Vol 13 (2) ◽  
pp. 504-520 ◽  
Author(s):  
D. Carrer ◽  
S. Lafont ◽  
J.-L. Roujean ◽  
J.-C. Calvet ◽  
C. Meurey ◽  
...  

Abstract The Land Surface Analysis Satellite Applications Facility (LSA SAF) project radiation fluxes, derived from the Meteosat Second Generation (MSG) geostationary satellite, were used in the Interactions between Soil, Biosphere, and Atmosphere (ISBA) land surface model (LSM), which is a component of the Surface Externalisée (SURFEX) modeling platform. The Système d’Analyze Fournissant des Renseignements Atmosphériques à la Neige (SAFRAN) atmospheric analysis provides high-resolution atmospheric variables used to drive LSMs over France. The impact of using the incoming solar and infrared radiation fluxes [downwelling surface shortwave (DSSF) and longwave (DSLF), respectively] from either SAFRAN or LSA SAF, in ISBA, was investigated over France for 2006. In situ observations from the Flux Network (FLUXNET) were used for the verification. Daily differences between SAFRAN and LSA SAF radiation fluxes averaged over the whole year 2006 were 3.75 and 2.61 W m−2 for DSSF and DSLF, respectively, representing 2.5% and 0.8% of their average values. The LSA SAF incoming solar radiation presented a better agreement with in situ measurements at six FLUXNET stations than the SAFRAN analysis. The bias and standard deviation of differences were reduced by almost 50%. The added value of the LSA SAF products was assessed with the simulated surface temperature, soil moisture, and the water and energy fluxes. The latter quantities were improved by the use of LSA SAF satellite estimates. As many areas lack a high-resolution meteorological analysis, the LSA SAF radiative products provide new and valuable information.


2021 ◽  
Vol 13 (9) ◽  
pp. 4385-4405
Author(s):  
Yaoping Wang ◽  
Jiafu Mao ◽  
Mingzhou Jin ◽  
Forrest M. Hoffman ◽  
Xiaoying Shi ◽  
...  

Abstract. Soil moisture (SM) datasets are critical to understanding the global water, energy, and biogeochemical cycles and benefit extensive societal applications. However, individual sources of SM data (e.g., in situ and satellite observations, reanalysis, offline land surface model simulations, Earth system model – ESM – simulations) have source-specific limitations and biases related to the spatiotemporal continuity, resolutions, and modeling and retrieval assumptions. Here, we developed seven global, gap-free, long-term (1970–2016), multilayer (0–10, 10–30, 30–50, and 50–100 cm) SM products at monthly 0.5∘ resolution (available at https://doi.org/10.6084/m9.figshare.13661312.v1; Wang and Mao, 2021) by synthesizing a wide range of SM datasets using three statistical methods (unweighted averaging, optimal linear combination, and emergent constraint). The merged products outperformed their source datasets when evaluated with in situ observations (mean bias from −0.044 to 0.033 m3 m−3, root mean square errors from 0.076 to 0.104 m3 m−3, Pearson correlations from 0.35 to 0.67) and multiple gridded datasets that did not enter merging because of insufficient spatial, temporal, or soil layer coverage. Three of the new SM products, which were produced by applying any of the three merging methods to the source datasets excluding the ESMs, had lower bias and root mean square errors and higher correlations than the ESM-dependent merged products. The ESM-independent products also showed a better ability to capture historical large-scale drought events than the ESM-dependent products. The merged products generally showed reasonable temporal homogeneity and physically plausible global sensitivities to observed meteorological factors, except that the ESM-dependent products underestimated the low-frequency temporal variability in SM and overestimated the high-frequency variability for the 50–100 cm depth. Based on these evaluation results, the three ESM-independent products were finally recommended for future applications because of their better performances than the ESM-dependent ones. Despite uncertainties in the raw SM datasets and fusion methods, these hybrid products create added value over existing SM datasets because of the performance improvement and harmonized spatial, temporal, and vertical coverages, and they provide a new foundation for scientific investigation and resource management.


2021 ◽  
Author(s):  
Chengcheng Xu ◽  
Laura Torres Rojas ◽  
Nathaniel W Chaney

<p>The accurate representation of soil properties in the land component of Earth system models (land surface models; LSMs) remains a persistent challenge. The emergence of state-of-the-art continental-scale digital soil mapping (DSM) provides a unique opportunity to address this weakness (e.g., SoilGrids and POLARIS). However, it remains unclear whether these data are able to improve the modeling of land surface fluxes and states (e.g., latent heat flux). This presentation addresses this question by running and evaluating a field-scale resolving land surface model (HydroBlocks) at each of the eddy covariance sites in the NEON and Ameriflux networks over the Contiguous United States (~250 sites). More explicitly, the HydroBlocks LSM is run at a 30-meter spatial resolution in 5 km boxes centered around each of the NEON eddy covariance sites using both the POLARIS and Soilgrids soil properties databases. The model is also run using the CONUS-Soil (i.e., STATSGO) soil properties database as a baseline for comparison. Each simulation is run between 2002 and 2018 at a 1-hour resolution. The remaining datasets used to parameterize and force HydroBlocks includes the Princeton Climate Forcing meteorological dataset (PCF), USGS elevation data, and the National Land Cover dataset (NLCD) with a 5-year spin-up period. The simulated soil moisture and land surface fluxes are then evaluated using available in-situ and eddy covariance measurements in the NEON and Ameriflux networks using a suite of performance metrics over multiple temporal scales. </p>


2010 ◽  
Vol 7 (5) ◽  
pp. 7151-7190
Author(s):  
C. Szczypta ◽  
J.-C. Calvet ◽  
C. Albergel ◽  
G. Balsamo ◽  
S. Boussetta ◽  
...  

Abstract. An evaluation of the global ECMWF atmospheric reanalysis ERA-Interim (with a 0.5° grid) is performed over France, based on the high resolution (8 km) SAFRAN atmospheric reanalysis. The ERA-Interim precipitation, Incoming Solar Radiation (ISR), air temperature, air humidity, and wind speed, are compared with their SAFRAN counterparts. Also, interpolated in situ ISR observations are used in order to consolidate the evaluation of this variable. The daily precipitation estimates produced by ERA-Interim over France correlate very well with SAFRAN. However, the values are underestimated by 26%. A GPCP-corrected version of ERA-Interim is less biased (10–15%). The ERA-Interim estimates of ISR correlate very well with SAFRAN and with in situ observations on a daily basis. Whereas SAFRAN underestimates the ISR by 6–8 W m−2, ERA-Interim overestimates the ISR by 9–10 W m−2. In order to assess the impact of the ERA-Interim errors, simulations of the ISBA-A-gs land surface model are performed over the SMOSREX grassland site in southwestern France using ERA-Interim (with and without GPCP rescaling) and SAFRAN. Latent and sensible heat fluxes are simulated, together with carbon dioxide fluxes. The rescaled ERA-Interim performs better than the original ERA-Interim and permits to achieve flux scores similar to those obtained with SAFRAN.


2007 ◽  
Vol 8 (1) ◽  
pp. 68-87 ◽  
Author(s):  
Margaret A. LeMone ◽  
Fei Chen ◽  
Joseph G. Alfieri ◽  
Mukul Tewari ◽  
Bart Geerts ◽  
...  

Abstract Analyses of daytime fair-weather aircraft and surface-flux tower data from the May–June 2002 International H2O Project (IHOP_2002) and the April–May 1997 Cooperative Atmosphere Surface Exchange Study (CASES-97) are used to document the role of vegetation, soil moisture, and terrain in determining the horizontal variability of latent heat LE and sensible heat H along a 46-km flight track in southeast Kansas. Combining the two field experiments clearly reveals the strong influence of vegetation cover, with H maxima over sparse/dormant vegetation, and H minima over green vegetation; and, to a lesser extent, LE maxima over green vegetation, and LE minima over sparse/dormant vegetation. If the small number of cases is producing the correct trend, other effects of vegetation and the impact of soil moisture emerge through examining the slope ΔxyLE/ΔxyH for the best-fit straight line for plots of time-averaged LE as a function of time-averaged H over the area. Based on the surface energy balance, H + LE = Rnet − Gsfc, where Rnet is the net radiation and Gsfc is the flux into the soil; Rnet − Gsfc ∼ constant over the area implies an approximately −1 slope. Right after rainfall, H and LE vary too little horizontally to define a slope. After sufficient drying to produce enough horizontal variation to define a slope, a steep (∼−2) slope emerges. The slope becomes shallower and better defined with time as H and LE horizontal variability increases. Similarly, the slope becomes more negative with moister soils. In addition, the slope can change with time of day due to phase differences in H and LE. These trends are based on land surface model (LSM) runs and observations collected under nearly clear skies; the vegetation is unstressed for the days examined. LSM runs suggest terrain may also play a role, but observational support is weak.


2017 ◽  
Vol 10 (5) ◽  
pp. 2031-2055 ◽  
Author(s):  
Thomas Schwitalla ◽  
Hans-Stefan Bauer ◽  
Volker Wulfmeyer ◽  
Kirsten Warrach-Sagi

Abstract. Increasing computational resources and the demands of impact modelers, stake holders, and society envision seasonal and climate simulations with the convection-permitting resolution. So far such a resolution is only achieved with a limited-area model whose results are impacted by zonal and meridional boundaries. Here, we present the setup of a latitude-belt domain that reduces disturbances originating from the western and eastern boundaries and therefore allows for studying the impact of model resolution and physical parameterization. The Weather Research and Forecasting (WRF) model coupled to the NOAH land–surface model was operated during July and August 2013 at two different horizontal resolutions, namely 0.03 (HIRES) and 0.12° (LOWRES). Both simulations were forced by the European Centre for Medium-Range Weather Forecasts (ECMWF) operational analysis data at the northern and southern domain boundaries, and the high-resolution Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) data at the sea surface.The simulations are compared to the operational ECMWF analysis for the representation of large-scale features. To analyze the simulated precipitation, the operational ECMWF forecast, the CPC MORPHing (CMORPH), and the ENSEMBLES gridded observation precipitation data set (E-OBS) were used as references.Analyzing pressure, geopotential height, wind, and temperature fields as well as precipitation revealed (1) a benefit from the higher resolution concerning the reduction of monthly biases, root mean square error, and an improved Pearson skill score, and (2) deficiencies in the physical parameterizations leading to notable biases in distinct regions like the polar Atlantic for the LOWRES simulation, the North Pacific, and Inner Mongolia for both resolutions.In summary, the application of a latitude belt on a convection-permitting resolution shows promising results that are beneficial for future seasonal forecasting.


2016 ◽  
Vol 20 (2) ◽  
pp. 697-713 ◽  
Author(s):  
H. Hoffmann ◽  
H. Nieto ◽  
R. Jensen ◽  
R. Guzinski ◽  
P. Zarco-Tejada ◽  
...  

Abstract. Estimating evaporation is important when managing water resources and cultivating crops. Evaporation can be estimated using land surface heat flux models and remotely sensed land surface temperatures (LST), which have recently become obtainable in very high resolution using lightweight thermal cameras and Unmanned Aerial Vehicles (UAVs). In this study a thermal camera was mounted on a UAV and applied into the field of heat fluxes and hydrology by concatenating thermal images into mosaics of LST and using these as input for the two-source energy balance (TSEB) modelling scheme. Thermal images are obtained with a fixed-wing UAV overflying a barley field in western Denmark during the growing season of 2014 and a spatial resolution of 0.20 m is obtained in final LST mosaics. Two models are used: the original TSEB model (TSEB-PT) and a dual-temperature-difference (DTD) model. In contrast to the TSEB-PT model, the DTD model accounts for the bias that is likely present in remotely sensed LST. TSEB-PT and DTD have already been well tested, however only during sunny weather conditions and with satellite images serving as thermal input. The aim of this study is to assess whether a lightweight thermal camera mounted on a UAV is able to provide data of sufficient quality to constitute as model input and thus attain accurate and high spatial and temporal resolution surface energy heat fluxes, with special focus on latent heat flux (evaporation). Furthermore, this study evaluates the performance of the TSEB scheme during cloudy and overcast weather conditions, which is feasible due to the low data retrieval altitude (due to low UAV flying altitude) compared to satellite thermal data that are only available during clear-sky conditions. TSEB-PT and DTD fluxes are compared and validated against eddy covariance measurements and the comparison shows that both TSEB-PT and DTD simulations are in good agreement with eddy covariance measurements, with DTD obtaining the best results. The DTD model provides results comparable to studies estimating evaporation with similar experimental setups, but with LST retrieved from satellites instead of a UAV. Further, systematic irrigation patterns on the barley field provide confidence in the veracity of the spatially distributed evaporation revealed by model output maps. Lastly, this study outlines and discusses the thermal UAV image processing that results in mosaics suited for model input. This study shows that the UAV platform and the lightweight thermal camera provide high spatial and temporal resolution data valid for model input and for other potential applications requiring high-resolution and consistent LST.


Sign in / Sign up

Export Citation Format

Share Document