Observational evidence of solar activity interaction with chlorine chemistry curbing Antarctic ozone loss

Author(s):  
Annika Seppälä ◽  
Emily Gordon ◽  
Bernd Funke ◽  
Johanna Tamminen ◽  
Kaley Walker

<p>We present the impact of the so-called energetic particle precipitation (EPP), part of natural solar forcing on the atmosphere, on polar stratospheric NO<sub>x</sub>, ozone, and chlorine chemistry in the Antarctic springtime, using multi-satellite observations covering the overall period of 2005–2017. We find consistent ozone increases when high solar activity occurs during years with easterly phase of the quasi biennial oscillation. These ozone enhancements are also present in total O<sub>3</sub> column observations. We find consistent decreases in springtime active chlorine following winters of elevated solar activity. Further analysis shows that this is accompanied by increase of chemically inactive chlorine reservoir species, explaining the observed ozone increase. This provides the first observational evidence supporting the previously proposed mechanism relating to EPP modulating chlorine driven ozone loss. Our findings suggest that solar activity via EPP has played an important role in modulating Antarctic ozone depletion in the last 15 years. As chlorine loading in the polar stratosphere continues to decrease in the future, this buffering mechanism will become less effective and catalytic ozone destruction by EPP produced NO<sub>x</sub> will likely become a major contributor to Antarctic ozone loss.</p>

2020 ◽  
Author(s):  
Emily M. Gordon ◽  
Annika Seppälä ◽  
Bernd Funke ◽  
Johanna Tamminen ◽  
Kaley A. Walker

Abstract. We investigate the impact of the so-called energetic particle precipitation (EPP) indirect effect on lower stratospheric ozone, ClO and ClONO2 in the Antarctic springtime. We use observations from Microwave Limb Sounder (MLS) and Ozone Monitoring Instrument (OMI) on Aura, Atmospheric Chemistry Experiment – Fourier Transform Spectrometer (ACE-FTS) on SciSat, and Michelson Interferometer for Passive Atmospheric Sound (MIPAS) on Envisat, covering the overall period of 2005–2017. Using the Ap index to proxy EPP, we find consistent ozone increases with elevated EPP during years with easterly phase of the quasi biennial oscillation (QBO) in both OMI and MLS observations. While these increases are opposite to what has been previously reported at higher altitudes, the pattern in the MLS O3 follows the typical descent patterns of EPP–NOx. The ozone enhancements are also present in the OMI total O3 column observations. Analogous to the descent patterns found in O3, we also found consistent decreases in springtime MLS ClO following winters of elevated EPP. To verify if this is due to a previously proposed mechanism of conversion of ClO to the reservoir species ClONO2 in reaction with NO2, we used ClONO2 observations from ACE-FTS and MIPAS. As ClO and NO2 are both catalysts in ozone destruction, the conversion into ClONO2 would result in ozone increase. We find a positive correlation between EPP and ClONO2 in the upper stratosphere in the early spring, and the lower stratosphere in late spring, providing the first observational evidence supporting the previously proposed mechanism relating to EPP–NOx modulating Clx driven ozone loss. Our findings suggest that EPP has played an important role in modulating ozone depletion in the last 15 years. As chlorine loading in the polar stratosphere continues to decrease in the future, this buffering mechanism will become less effective and catalytic ozone destruction by EPP–NOx will likely become a major contributor to Antarctic ozone loss.


2021 ◽  
Vol 21 (4) ◽  
pp. 2819-2836
Author(s):  
Emily M. Gordon ◽  
Annika Seppälä ◽  
Bernd Funke ◽  
Johanna Tamminen ◽  
Kaley A. Walker

Abstract. We investigate the impact of the so-called energetic particle precipitation (EPP) indirect effect on lower stratospheric ozone, ClO, and ClONO2 in the Antarctic springtime. We use observations from the Microwave Limb Sounder (MLS) and Ozone Monitoring Instrument (OMI) on Aura, the Atmospheric Chemistry Experiment – Fourier Transform Spectrometer (ACE-FTS) on SCISAT, and the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on Envisat, covering the period from 2005 to 2017. Using the geomagnetic activity index Ap as a proxy for EPP, we find consistent ozone increases with elevated EPP during years with an easterly phase of the quasi-biennial oscillation (QBO) in both OMI and MLS observations. While these increases are the opposite of what has previously been reported at higher altitudes, the pattern in the MLS O3 follows the typical descent patterns of EPP-NOx. The ozone enhancements are also present in the OMI total O3 column observations. Analogous to the descent patterns found in O3, we also found consistent decreases in springtime MLS ClO following winters with elevated EPP. To verify if this is due to a previously proposed mechanism involving the conversion of ClO to the reservoir species ClONO2 in reaction with NO2, we used ClONO2 observations from ACE-FTS and MIPAS. As ClO and NO2 are both catalysts in ozone destruction, the conversion to ClONO2 would result in an ozone increase. We find a positive correlation between EPP and ClONO2 in the upper stratosphere in the early spring and in the lower stratosphere in late spring, providing the first observational evidence supporting the previously proposed mechanism relating to EPP-NOx modulating Clx-driven ozone loss. Our findings suggest that EPP has played an important role in modulating ozone depletion in the last 15 years. As chlorine loading in the polar stratosphere continues to decrease in the future, this buffering mechanism will become less effective, and catalytic ozone destruction by EPP-NOx will likely become a major contributor to Antarctic ozone loss.


Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1526
Author(s):  
Chen-Ke-Min Teng ◽  
Sheng-Yang Gu ◽  
Yusong Qin ◽  
Xiankang Dou

In this study, a global atmospheric model, Specified Dynamics Whole Atmosphere Community Climate Model with thermosphere and ionosphere eXtension (SD-WACCM-X), and the residual circulation principle were used to study the global atmospheric circulation from the lower to upper atmosphere (~500 km) from 2002 to 2019. Our analysis shows that the atmospheric circulation is clearly influenced by solar activity, especially in the upper atmosphere, which is mainly characterized by an enhanced atmospheric circulation in years with high solar activity. The atmospheric circulation in the upper atmosphere also exhibits an ~11 year period, and its variation is highly correlated with the temporal variation in the F10.7 solar index during the same time series, with a maximum correlation coefficient of up to more than 0.9. In the middle and lower atmosphere, the impact of solar activity on the atmospheric circulation is not as obvious as in the upper atmosphere due to some atmospheric activities such as the Quasi-Biennial Oscillation (QBO), El Niño–Southern Oscillation (ENSO), sudden stratospheric warming (SSW), volcanic forcing, and so on. By comparing the atmospheric circulation in different latitudinal regions between years with high and low solar activity, we found the atmospheric circulation in mid- and high-latitude regions is more affected by solar activity than in low-latitude and equatorial regions. In addition, clear seasonal variation in atmospheric circulation was detected in the global atmosphere, excluding the regions near 10−4 hPa and the lower atmosphere, which is mainly characterized by a flow from the summer hemisphere to the winter hemisphere. In the middle and low atmosphere, the atmospheric circulation shows a quasi-biennial oscillatory variation in the low-latitude and equatorial regions. This work provides a referable study of global atmospheric circulation and demonstrates the impacts of solar activity on global atmospheric circulation.


2019 ◽  
Vol 69 (1) ◽  
pp. 29
Author(s):  
Andrew R. Klekociuk ◽  
Matthew B. Tully ◽  
Paul B. Krummel ◽  
Oleksandr Evtushevsky ◽  
Volodymyr Kravchenko ◽  
...  

We review the 2017 Antarctic ozone hole, making use of various meteorological reanalyses, and in-situ, satellite and ground-based measurements of ozone and related trace gases, and ground-based measurements of ultraviolet radiation. The 2017 ozone hole was associated with relatively high-ozone concentrations over the Antarctic region compared to other years, and our analysis ranked it in the smallest 25% of observed ozone holes in terms of size. The severity of stratospheric ozone loss was comparable with that which occurred in 2002 (when the stratospheric vortex exhibited an unprecedented major warming) and most years prior to 1989 (which were early in the development of the ozone hole). Disturbances to the polar vortex in August and September that were associated with intervals of anomalous planetary wave activity resulted in significant erosion of the polar vortex and the mitigation of the overall level of ozone depletion. The enhanced wave activity was favoured by below-average westerly winds at high southern latitudes during winter, and the prevailing easterly phase of the quasi-biennial oscillation (QBO). Using proxy information on the chemical make-up of the polar vortex based on the analysis of nitrous oxide and the likely influence of the QBO, we suggest that the concentration of inorganic chlorine, which plays a key role in ozone loss, was likely similar to that in 2014 and 2016, when the ozone hole was larger than that in 2017. Finally, we found that the overall severity of Antarctic ozone loss in 2017 was largely dictated by the timing of the disturbances to the polar vortex rather than interannual variability in the level of inorganic chlorine.


2014 ◽  
Vol 14 (7) ◽  
pp. 9729-9745 ◽  
Author(s):  
X. Yang ◽  
N. L. Abraham ◽  
A. T. Archibald ◽  
P. Braesicke ◽  
J. Keeble ◽  
...  

Abstract. Naturally produced very short-lived substances (VSLS), like bromocarbons, account for almost a quarter of the current stratospheric inorganic bromine, Bry. Following VSLS oxidation, bromine radicals (Br and BrO) can catalytically destroy ozone. The extent to which possible increases in surface emissions or transport of these VSLS bromocarbons to the stratosphere could counteract the effect of halogen reductions under the Montreal Protocol is an important policy question. Here by using a chemistry–climate model, UM-UKCA, we investigate the impact of a hypothetical increase in VSLS on ozone and how that impact depends on the background concentrations of chlorine and bromine. Our model experiments indicate that for a ~5 ppt increase in Bry from VSLS, the local ozone loss in the lowermost stratosphere of the Southern Hemisphere (SH) may reach up to 10% in the annual mean; the ozone loss in the Northern Hemisphere (NH) is smaller (4–6%). There is more ozone loss following an increase in VSLS burden under a high stratospheric chlorine background than under a low chlorine background indicating the importance of the inter-halogen reactions. For example, the rate of decline of the stratospheric ozone concentration as a function of Bry is higher by about 30–40% when stratospheric Cly is ~3 ppb (present day) compared with Cly of ~0.8 ppb (apre-industrial or projected future situation). Although bromine plays an important role in destroying ozone, inorganic chlorine is the dominant halogen compound. Even if bromine levels from natural VSLS were to increase significantly later this century, changes in the concentration of ozone will be dominated by the recovery of anthropogenic chlorine. Our calculation suggests that for a 5 ppt increase in Bry from VSLS, the Antarctic ozone hole recover date could be delayed by approximately 7 years.


2021 ◽  
Vol 2099 (1) ◽  
pp. 012034
Author(s):  
V M Efimov ◽  
K V Efimov ◽  
D A Polunin ◽  
V Y Kovaleva

Abstract When analyzing a 1D time series, it is traditional to represent it as the sum of the trend, cyclical components and noise. The trend is seen as an external influence. However, the impact can be not only additive, but also multiplicative. In this case, not only the level changes, but also the amplitude of the cyclic components. In the PCA-Seq method, a generalization of SSA, it is possible to pre-standardize fragments of a time series to solve this problem. The algorithm is applied to the Anderson series – a sign alternating version of the well-known Wolf series, reflecting the 22-year Hale cycle. The existence of this cycle is not disputed at high solar activity, but there are doubts about the constancy of its period at this time, as well as its existence during the epoch of low solar activity. The processing of the series by the PCA-Seq method revealed clear oscillations fluctuations of almost constant amplitude with an average period of 21.9 years, and it was found that the correlation of these oscillations with the time axis for 300 years does not differ significantly from zero. This confirms the hypothesis of the existence of 22-year oscillations in solar activity even at its minima, like the Maunder minimum.


2014 ◽  
Vol 14 (19) ◽  
pp. 10431-10438 ◽  
Author(s):  
X. Yang ◽  
N. L. Abraham ◽  
A. T. Archibald ◽  
P. Braesicke ◽  
J. Keeble ◽  
...  

Abstract. Naturally produced very short-lived substances (VSLS) account for almost a quarter of the current stratospheric inorganic bromine, Bry. Following VSLS oxidation, bromine radicals (Br and BrO) can catalytically destroy ozone. The extent to which possible increases in surface emissions or transport of these VSLS bromocarbons to the stratosphere could counteract the effect of halogen reductions under the Montreal Protocol is an important policy question. Here, by using a chemistry–climate model, UM-UKCA, we investigate the impact of a hypothetical doubling (an increase of 5 ppt Bry) of VSLS bromocarbons on ozone and how the resulting ozone changes depend on the background concentrations of chlorine and bromine. Our model experiments indicate that for the 5 ppt increase in Bry from VSLS, the ozone decrease in the lowermost stratosphere of the Southern Hemisphere (SH) may reach up to 10% in the annual mean; the ozone decrease in the Northern Hemisphere (NH) is smaller (4–6%). The largest impact on the ozone column is found in the Antarctic spring. There is a significantly larger ozone decrease following the doubling of the VSLS burden under a high stratospheric chlorine background than under a low chlorine background, indicating the importance of the inter-halogen reactions. For example, the decline in the high-latitude, lower-stratospheric ozone concentration as a function of Bry is higher by about 30–40% when stratospheric Cly is ~ 3 ppb (present day), compared with Cly of ~ 0.8 ppb (a pre-industrial or projected future situation). Bromine will play an important role in the future ozone layer. However, even if bromine levels from natural VSLS were to increase significantly later this century, changes in the concentration of ozone will likely be dominated by the decrease in anthropogenic chlorine. Our calculation suggests that for a 5 ppt increase in Bry from VSLS, the Antarctic ozone hole recovery date could be delayed by approximately 6–8 years, depending on Cly levels.


1992 ◽  
Vol 338 (1285) ◽  
pp. 219-226 ◽  

Although stratospheric ozone loss had been predicted for m any years, the discovery of the Antarctic ozone hole was a surprise which necessitated a major rethink in theories of stratospheric chemistry. The new ideas advanced are discussed here. Global ozone loss has now also been reported after careful analysis of satellite and groundbased data sets. The possible causes of this loss are considered. Further advances require a careful coordination of field measurements and large-scale numerical modelling.


2010 ◽  
Vol 10 (14) ◽  
pp. 6569-6581 ◽  
Author(s):  
J. Kuttippurath ◽  
F. Goutail ◽  
J.-P. Pommereau ◽  
F. Lefèvre ◽  
H. K. Roscoe ◽  
...  

Abstract. The passive tracer method is used to estimate ozone loss from ground-based measurements in the Antarctic. A sensitivity study shows that the ozone depletion can be estimated within an accuracy of ~4%. The method is then applied to the ground-based observations from Arrival Heights, Belgrano, Concordia, Dumont d'Urville, Faraday, Halley, Marambio, Neumayer, Rothera, South Pole, Syowa, and Zhongshan for the diagnosis of ozone loss in the Antarctic. On average, the ten-day boxcar average of the vortex mean ozone column loss deduced from the ground-based stations was about 55±5% in 2005–2009. The ozone loss computed from the ground-based measurements is in very good agreement with those derived from satellite measurements (OMI and SCIAMACHY) and model simulations (REPROBUS and SLIMCAT), where the differences are within ±3–5%. The historical ground-based total ozone observations in October show that the depletion started in the late 1970s, reached a maximum in the early 1990s and stabilised afterwards due to saturation. There is no indication of ozone recovery yet. At southern mid-latitudes, a reduction of 20–50% is observed for a few days in October–November at the newly installed Rio Gallegos station. Similar depletion of ozone is also observed episodically during the vortex overpasses at Kerguelen in October–November and at Macquarie Island in July–August of the recent winters. This illustrates the significance of measurements at the edges of Antarctica.


Sign in / Sign up

Export Citation Format

Share Document