Biases of aerosol simulation in the AerChemMIP models over China and impact of emission uncertainties

Author(s):  
Tianyi Fan ◽  
Xiaohong Liu ◽  
Chenglai Wu ◽  
Yi Gao ◽  
Qiang Zhang ◽  
...  

<p>          Biases of aerosol simulation by models participating the Aerosol and Chemistry Model Intercomparison Project (AerChemMIP) were identified over China. Although the yearly trend of simulated aerosol optical depth (AOD) agrees with the MODIS satellite retrievals for the country-wide averages, this agreement is an offset between the underestimation of AOD over eastern China and the overestimation of AOD over western China. The AODs were underestimated over the Northeastern China Plain and the North China Plain all year along and overestimated over Sichuan Basin in the winter. These model biases were persistent over multiple years from 2002 to 2015. We attempt to evaluate the impact of emission uncertainties on model simulated aerosol properties and aerosol radiative forcing by comparing the simulations by the Community Earth System Model version 2 (CESM2) with the default inventory developed by the Community Emission Data System (CEDS) and with a country-level inventory (Multi-resolution Emission Inventory for China, MEIC). It turns out that the differences between simulations with the two emission inventories are much smaller than the differences between simulations and observations. Low-bias of precursor gases (e.g., SO<sub>2</sub>), too strong convergence of wind field, too strong dilution and transport by summer monsoon circulation, too much wet scavenging by precipitation, and too weak aerosol swelling due to low-biased relative humidity are suggested to be responsible for the biased AOD in eastern China. This indicates that the influence of emission inventory uncertainties on aerosol radiative forcing can be overwhelmed by influences of biased meteorology and aerosol processes. Therefore, it is necessary for climate models to perform reasonably well in the dynamical, physical and chemical processes in order to estimate the aerosol radiative forcing.   </p>

2019 ◽  
Vol 46 (7) ◽  
pp. 4039-4048 ◽  
Author(s):  
S. T. Turnock ◽  
G. W. Mann ◽  
M. T. Woodhouse ◽  
M. Dalvi ◽  
F. M. O'Connor ◽  
...  

2019 ◽  
Vol 19 (20) ◽  
pp. 13175-13188 ◽  
Author(s):  
Gang Zhao ◽  
Jiangchuan Tao ◽  
Ye Kuang ◽  
Chuanyang Shen ◽  
Yingli Yu ◽  
...  

Abstract. Large uncertainties exist when estimating radiative effects of ambient black carbon (BC) aerosol. Previous studies about the BC aerosol radiative forcing mainly focus on the BC aerosols' mass concentrations and mixing states, while the effects of BC mass size distribution (BCMSD) were not well considered. In this paper, we developed a method of measuring the BCMSD by using a differential mobility analyzer in tandem with an Aethalometer. A comprehensive method of multiple charging corrections was proposed and implemented in measuring the BCMSD. Good agreement was obtained between the BC mass concentration integrated from this system and that measured in the bulk phase, demonstrating the reliability of our proposed method. Characteristics of the BCMSD and corresponding radiative effects were studied based on a field measurement campaign conducted in the North China Plain by using our own measurement system. Results showed that the BCMSD had two modes and the mean peak diameters of the modes were 150 and 503 nm. The BCMSD of the coarser mode varied significantly under different pollution conditions with peak diameter varying between 430 and 580 nm, which gave rise to significant variation in aerosol bulk optical properties. The direct aerosol radiative forcing was estimated to vary by 8.45 % for different measured BCMSDs of the coarser mode, which shared the same magnitude with the variation associated with assuming different aerosol mixing states (10.5 %). Our study reveals that the BCMSD as well as its mixing state in estimating the direct aerosol radiative forcing matters. Knowledge of the BCMSD should be fully considered in climate models.


2016 ◽  
Author(s):  
Tianyi Fan ◽  
Xiaohong Liu ◽  
Po-Lun Ma ◽  
Qiang Zhang ◽  
Zhanqing Li ◽  
...  

Abstract. Emissions of aerosols and gas precursors in China have increased significantly over the past three decades with the rapid economic growth. These increases might have a large climate effect. However, global aerosol-climate models often show large biases in aerosol distribution and radiative forcing in China, and these biases are often attributed to uncertainties and biases associated with the emission inventory used to drive the models. In this study, an energy-statics and technology-based emission inventory, Multi-scale Emission Inventory for China (MEIC), was compiled and used to drive the Community Atmosphere Model Version 5 (CAM5) to evaluate aerosol distribution and radiative effects in China against observations, compared with the model simulations with the widely-used IPCC AR5 emission inventory. We found that the new MEIC emission improves the annual mean AOD simulations in eastern China by 12.9 % compared with MODIS observations and 14.7 % compared with MISR observations, and explains 22 %–28 % of the AOD low bias simulated with the AR5 emission. Seasonal variation of the MEIC emission leads to a better agreement with the observed surface concentrations of primary aerosols (i.e., primary organic carbon and black carbon) than the AR5 emission, while the seasonal variation of secondary aerosols (i.e., sulfate and secondary organic aerosol) depends less on the emission. The new emission inventory estimates the annual averaged aerosol direct radiative effect at TOA, surface, and atmosphere to be −0.50, −12.76, and 12.26 W m−2 respectively over eastern China, which are enhanced by −0.19, −2.42, and 2.23 W m−2 compared with the AR5 emission. Due to higher winter BC emission in MEIC, the atmospheric warming effect and the surface cooling of BC are twice as much as those using the AR5 emission. This study highlights the importance of improving the aerosol and gas precursor emissions in modeling the atmospheric aerosols and their radiative effects.


2019 ◽  
Author(s):  
Gang Zhao ◽  
Jiangchuan Tao ◽  
Ye Kuang ◽  
Chuanyang Shen ◽  
Yingli Yu ◽  
...  

Abstract. Large uncertainties exist when estimating radiative effects of ambient black carbon (BC) aerosol. Previous studies about the BC aerosol radiative forcing mainly focus on the BC aerosols’ mass concentrations and mixing states, while the effects of BC mass size distribution (BCMSD) were not well considered. In this paper, we developed a method by measuring the BCMSD by using a differential mobility analyzer in tandem with an aethalometer. A comprehensive method of multiple charging corrections is proposed and implemented in measuring the BCMSD. Good agreement is obtained between the BC mass concentration integrated from this system and that measured in bulk phase, demonstrating the reliability of our proposed method. Characteristics of the BCMSD and corresponding radiative effects are studied based on field measurements conducted in the North China Plain by using our own designed measurement system. Results show that the BCMSD have two modes and the mean peak diameters of the two modes are 150 nm and 503 nm respectively. The BCMSD of coarser mode varies significantly under different pollution conditions with peak diameter varying between 430 nm and 580 nm, which gives rise to significant variation in aerosol buck optical properties. The aerosol direct aerosol radiative forcing is estimated to vary by 22.5 % for different measured BCMSDs, which shares the same magnitude to the variation associated with assuming different aerosol mixing states (21.5 %). Our study reveals that the BCMSD matters as well as their mixing state in estimating the direct aerosol radiative forcing. Knowledge of the BCMSD should be fully considered in climate models.


2006 ◽  
Vol 7 (5) ◽  
pp. 976-983 ◽  
Author(s):  
Jinwon Kim ◽  
Yu Gu ◽  
K. N. Liou

Abstract To understand the regional impact of the atmospheric aerosols on the surface energy and water cycle in the southern Sierra Nevada characterized by extreme variations in terrain elevation, the authors examine the aerosol radiative forcing on surface insolation and snowmelt for the spring of 1998 in a regional climate model experiment. With a prescribed aerosol optical thickness of 0.2, it is found that direct aerosol radiative forcing influences spring snowmelt primarily by reducing surface insolation and that these forcings on surface insolation and snowmelt vary strongly following terrain elevation. The direct aerosol radiative forcing on surface insolation is negative in all elevations. It is nearly uniform in the regions below 2000 m and decreases with increasing elevation in the region above 2000 m. This elevation dependency in the direct aerosol radiative forcing on surface insolation is related to the fact that the amount of cloud water and the frequency of cloud formation are nearly uniform in the lower elevation region, but increase with increasing elevation in the higher elevation region. This also suggests that clouds can effectively mask the direct aerosol radiative forcing on surface insolation. The direct aerosol radiative forcing on snowmelt is notable only in the regions above 2000 m and is primarily via the reduction in the surface insolation by aerosols. The effect of this forcing on low-level air temperature is as large as −0.3°C, but its impact on snowmelt is small because the sensible heat flux change is much smaller than the insolation change. The direct aerosol radiative forcing on snowmelt is significant only when low-level temperature is near the freezing point, between −3° and 5°C. When low-level temperature is outside this range, the direct aerosol radiative forcing on surface insolation has only a weak influence on snowmelt. The elevation dependency of the direct aerosol radiative forcing on snowmelt is related with this low-level temperature effect as the occurrence of the favored temperature range is most frequent in high elevation regions.


Atmosphere ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 441 ◽  
Author(s):  
Hongyue Zhang ◽  
Siyu Chen ◽  
Nanxuan Jiang ◽  
Xin Wang ◽  
Xiaorui Zhang ◽  
...  

The effect of aerosols is an important indicator of climate change. Sulfate aerosols, as the major scattering aerosols, which have attracted more and more attention in recent years. The Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) were utilized to investigate the spatial distribution of sulfate aerosols and their radiative forcing characteristics over East Asia in 2010. Results showed that sulfate aerosols were mainly distributed over eastern China (24–43° N, 101–126° E), especially in the Sichuan Basin. The concentration of sulfate aerosols decreased with increasing altitude over East Asia. It also exhibited obvious seasonal variations, where the largest range of sulfate aerosol concentrations was found in summer, with a maximum of 2.4 μg kg−1 over eastern China. Although sulfate aerosol concentrations varied slightly during day and night, there was still a significantly difference in the sulfate aerosol radiative forcing. Specifically, the magnitude of the direct radiative forcing induced by sulfate aerosols at the surface was approximately −3.02 W m−2 in the daytime, while that was +0.24 W m−2 in the nighttime. This asymmetric change that was caused by the radiative forcing of sulfate aerosols between day and night would have significant impacts on climate change at the regional scale.


2018 ◽  
Author(s):  
Jill S. Johnson ◽  
Leighton A. Regayre ◽  
Masaru Yoshioka ◽  
Kirsty J. Pringle ◽  
Lindsay A. Lee ◽  
...  

Abstract. Observational constraint of simulated aerosol and cloud properties is an essential part of building trustworthy climate models for calculating aerosol radiative forcing. Models are usually tuned to achieve good agreement with observations, but tuning produces just one of many potential variants of a model, so the model uncertainty cannot be determined. Here we estimate the uncertainty in aerosol effective radiative forcing (ERF) in a tuned climate model by constraining 4 million variants of the HadGEM3-UKCA aerosol-climate model to match nine common observations (top-of-atmosphere shortwave flux, aerosol optical depth, PM2.5, cloud condensation nuclei, concentrations of sulphate, black carbon and organic carbon, as well as decadal trends in aerosol optical depth and surface shortwave radiation.) The model uncertainty is calculated by using a perturbed parameter ensemble that samples twenty-seven uncertainties in both the aerosol model and the physical climate model. Focusing over Europe, we show that the aerosol ERF uncertainty can be reduced by about 30 % by constraining it to the nine observations, demonstrating that producing climate models with an observationally plausible base state can contribute to narrowing the uncertainty in aerosol ERF. However, the uncertainty in the aerosol ERF after observational constraint is large compared to the typical spread of a multi-model ensemble. Our results therefore raise questions about whether the underlying multi-model uncertainty would be larger if similar approaches as adopted here were applied more widely. It is hoped that aerosol ERF uncertainty can be further reduced by introducing process-related constraints, however, any such results will be robust only if the enormous number of potential model variants is explored.


2017 ◽  
Vol 98 (9) ◽  
pp. 1857-1877 ◽  
Author(s):  
C. L. Reddington ◽  
K. S. Carslaw ◽  
P. Stier ◽  
N. Schutgens ◽  
H. Coe ◽  
...  

Abstract The largest uncertainty in the historical radiative forcing of climate is caused by changes in aerosol particles due to anthropogenic activity. Sophisticated aerosol microphysics processes have been included in many climate models in an effort to reduce the uncertainty. However, the models are very challenging to evaluate and constrain because they require extensive in situ measurements of the particle size distribution, number concentration, and chemical composition that are not available from global satellite observations. The Global Aerosol Synthesis and Science Project (GASSP) aims to improve the robustness of global aerosol models by combining new methodologies for quantifying model uncertainty, to create an extensive global dataset of aerosol in situ microphysical and chemical measurements, and to develop new ways to assess the uncertainty associated with comparing sparse point measurements with low-resolution models. GASSP has assembled over 45,000 hours of measurements from ships and aircraft as well as data from over 350 ground stations. The measurements have been harmonized into a standardized format that is easily used by modelers and nonspecialist users. Available measurements are extensive, but they are biased to polluted regions of the Northern Hemisphere, leaving large pristine regions and many continental areas poorly sampled. The aerosol radiative forcing uncertainty can be reduced using a rigorous model–data synthesis approach. Nevertheless, our research highlights significant remaining challenges because of the difficulty of constraining many interwoven model uncertainties simultaneously. Although the physical realism of global aerosol models still needs to be improved, the uncertainty in aerosol radiative forcing will be reduced most effectively by systematically and rigorously constraining the models using extensive syntheses of measurements.


Sign in / Sign up

Export Citation Format

Share Document