Development of an interactive Cloud-based seismic network modelling application on a common Geophysical Processing Toolkit platform

Author(s):  
Pavel Golodoniuc ◽  
Januka Attanayake ◽  
Abraham Jones ◽  
Samuel Bradley

<p>Detecting and locating earthquakes relies on seismic events being recorded by a number of deployed seismometers. To detect earthquakes effectively and accurately, seismologists must design and install a network of seismometers that can capture small seismic events in the sub-surface.</p><p>A major challenge when deploying an array of seismometers (seismic array) is predicting the smallest earthquake that could be detected and located by that network. Varying the spacing and number of seismometers dramatically affects network sensitivity and location precision and is very important when researchers are investigating small-magnitude local earthquakes. For cost reasons, it is important to optimise network design before deploying seismometers in the field. In doing so, seismologists must accurately account for parameters such as station locations, site-specific noise levels, earthquake source parameters, seismic velocity and attenuation in the wave propagation medium, signal-to-noise ratios, and the minimum number of stations required to compute high-quality locations.</p><p>AuScope AVRE Engage Program team has worked with researchers from the seismology team at the University of Melbourne to better understand their solution for optimising seismic array design to date: an analytical method called SENSI that has been developed by Tramelli et al. (2013) to design seismic networks, including the GipNet array deployed to monitor seismicity in the Gippsland region in Victoria, Australia. The underlying physics and mechanics of the method are straightforward, and when applied sensibly, can be used as a basis for the design of seismic networks anywhere in the world. Our engineers have built an application leveraging a previously developed Geophysical Processing Toolkit (GPT) as an application platform and harnessed the scalability of a Cloud environment provided by the EASI Hub, which minimised the overall development time. The GPT application platform provided the groundwork for a web-based application interface and enabled interactive visualisations to facilitate human-computer interaction and experimentation.</p>

2004 ◽  
Vol 31 (12) ◽  
pp. n/a-n/a ◽  
Author(s):  
Kazutoshi Imanishi ◽  
William L. Ellsworth ◽  
Stephanie G. Prejean

2021 ◽  
Author(s):  
Itzhak Lior ◽  
Anthony Sladen ◽  
Diego Mercerat ◽  
Jean-Paul Ampuero ◽  
Diane Rivet ◽  
...  

<p>The use of Distributed Acoustic Sensing (DAS) presents unique advantages for earthquake monitoring compared with standard seismic networks: spatially dense measurements adapted for harsh environments and designed for remote operation. However, the ability to determine earthquake source parameters using DAS is yet to be fully established. In particular, resolving the magnitude and stress drop, is a fundamental objective for seismic monitoring and earthquake early warning. To apply existing methods for source parameter estimation to DAS signals, they must first be converted from strain to ground motions. This conversion can be achieved using the waves’ apparent phase velocity, which varies for different seismic phases ranging from fast body-waves to slow surface- and scattered-waves. To facilitate this conversion and improve its reliability, an algorithm for slowness determination is presented, based on the local slant-stack transform. This approach yields a unique slowness value at each time instance of a DAS time-series. The ability to convert strain-rate signals to ground accelerations is validated using simulated data and applied to several earthquakes recorded by dark fibers of three ocean-bottom telecommunication cables in the Mediterranean Sea. The conversion emphasizes fast body-waves compared to slow scattered-waves and ambient noise, and is robust even in the presence of correlated noise and varying wave propagation directions. Good agreement is found between source parameters determined using converted DAS waveforms and on-land seismometers for both P- and S-wave records. The demonstrated ability to resolve source parameters using P-waves on horizontal ocean-bottom fibers is key for the implementation of DAS based earthquake early warning, which will significantly improve hazard mitigation capabilities for offshore and tsunami earthquakes.</p>


2021 ◽  
Author(s):  
Simone Cesca ◽  
Carla Valenzuela Malebrán ◽  
José Ángel López-Comino ◽  
Timothy Davis ◽  
Carlos Tassara ◽  
...  

<p> A complex seismic sequence took place in 2014 at the Juan Fernández microplate, a small microplate located between Pacific, Nazca and Antarctica plates. Despite the remoteness of the study region and the lack of local data, we were able to resolve earthquake source parameters and to reconstruct the complex seismic sequence, by using modern waveform-based seismological techniques. The sequence started with an exceptional Mw 7.1-6.7 thrust – strike slip earthquake doublet, the first subevent being the largest earthquake ever recorded in the region and one of the few rare thrust earthquakes in a region otherwise characterized by normal faulting and strike slip earthquakes. The joint analysis of seismicity and focal mechanisms suggest the activation of E-W and NE-SW faults or of an internal curved pseudofault, which is formed in response to the microplate rotation, with alternation of thrust and strike-slip earthquakes. Seismicity migrated Northward in its final phase, towards the microplate edge, where a second doublet with uneven focal mechanisms occurred. The sequence rupture kinematics is well explained by Coulomb stress changes imparted by the first subevent. Our analysis show that compressional stresses, which have been mapped at the northern boundary of the microplate, but never accompanied by large thrust earthquakes, can be accommodated by the rare occurrence of large, impulsive, shallow thrust earthquakes, with a considerable tsunamigenic potential.</p>


1996 ◽  
Vol 86 (2) ◽  
pp. 470-476 ◽  
Author(s):  
Cheng-Horng Lin ◽  
S. W. Roecker

Abstract Seismograms of earthquakes and explosions recorded at local, regional, and teleseismic distances by a small-aperture, dense seismic array located on Pinyon Flat, in southern California, reveal large (±15°) backazimuth anomalies. We investigate the causes and implications of these anomalies by first comparing the effectiveness of estimating backazimuth with an array using three different techniques: the broadband frequency-wavenumber (BBFK) technique, the polarization technique, and the beamforming technique. While each technique provided nearly the same direction as a most likely estimate, the beamforming estimate was associated with the smallest uncertainties. Backazimuth anomalies were then calculated for the entire data set by comparing the results from beamforming with backazimuths derived from earthquake locations reported by the Anza and Caltech seismic networks and the Preliminary Determination of Epicenters (PDE) Bulletin. These backazimuth anomalies have a simple sinelike dependence on azimuth, with the largest anomalies observed from the southeast and northwest directions. Such a trend may be explained as the effect of one or more interfaces dipping to the northeast beneath the array. A best-fit model of a single interface has a dip and strike of 20° and 315°, respectively, and a velocity contrast of 0.82 km/sec. Application of corrections computed from this simple model to ray directions significantly improves locations at all distances and directions, suggesting that this is an upper crustal feature. We confirm that knowledge of local structure can be very important for earthquake location by an array but also show that corrections computed from simple models may not only be adequate but superior to those determined by raytracing through smoothed laterally varying models.


Author(s):  
Maria Mesimeri ◽  
Kristine L. Pankow ◽  
James Rutledge

ABSTRACT We propose a new frequency-domain-based algorithm for detecting small-magnitude seismic events using dense surface seismic arrays. Our proposed method takes advantage of the high energy carried by S waves, and approximate known source locations, which are used to rotate the horizontal components to obtain the maximum amplitude. By surrounding the known source area with surface geophones, we achieve a favorable geometry for locating the detected seismic events with the backprojection method. To test our new detection method, we used a dense circular array, consisting of 151 5 Hz three-component geophones, over a 5 km aperture that was in operation at the Utah Frontier Observatory for Research in Geothermal Energy (FORGE) in southcentral Utah. We apply the new detection method during a small-scale test injection phase at FORGE, and during an aftershock sequence of an Mw 4.1 earthquake located ∼30  km north of the geophone array, within the Black Rock volcanic field. We are able to detect and locate microseismic events (Mw<0) during injections, despite the high level of anthropogenic activity, and several aftershocks that are missing from the regional catalog. By comparing our method with known algorithms that operate both in the time and frequency domain, we show that our proposed method performs better in the case of the FORGE injection monitoring, and equally well for the off-array aftershock sequence. Our new method has the potential to improve microseismic event detections even in extremely noisy environments, and the proposed location scheme serves as a direct discriminant between true and false detections.


2015 ◽  
Vol 22 (5) ◽  
pp. 625-632
Author(s):  
P. A. Toledo ◽  
S. R. Riquelme ◽  
J. A. Campos

Abstract. We study the main parameters of earthquakes from the perspective of the first digit phenomenon: the nonuniform probability of the lower first digit different from 0 compared to the higher ones. We found that source parameters like coseismic slip distributions at the fault and coseismic inland displacements show first digit anomaly. We also found the tsunami runups measured after the earthquake to display the phenomenon. Other parameters found to obey first digit anomaly are related to the aftershocks: we show that seismic moment liberation and seismic waiting times also display an anomaly. We explain this finding by invoking a self-organized criticality framework. We demonstrate that critically organized automata show the first digit signature and we interpret this as a possible explanation of the behavior of the studied parameters of the Tohoku earthquake.


2019 ◽  
pp. 68-75
Author(s):  
A. S. Fomochkina ◽  
V. G. Bukchin

Alongside the determination of the focal mechanism and source depth of an earthquake by direct examination of their probable values on a grid in the parameter space, also the resolution of these determinations can be estimated. However, this approach requires considerable time in the case of a detailed search. A special case of a shallow earthquake whose one nodal plane is subhorizontal is an example of the sources that require the use of a detailed grid. For studying these events based on the records of the long-period surface waves, the grids with high degree of detail in the angles of the focal mechanism are required. We discuss the application of the methods of parallel computing for speeding up the calculations of earthquake parameters and present the results of studying the strongest aftershock of the Tohoku, Japan, earthquake by this approach.


1973 ◽  
Vol 63 (2) ◽  
pp. 599-614 ◽  
Author(s):  
M. E. O'Neill ◽  
J. H. Healy

abstract A simple method of estimating source dimensions and stress drops of small earthquakes is presented. The basic measurement is the time from the first break to the first zero crossing on short-period seismograms. Graphs relating these measurements to rise time as a function of Q and instrument response permit an estimate of earthquake source parameters without the calculation of spectra. Tests on data from Rangely, Colorado, and Hollister, California, indicate that the method gives reasonable results.


Sign in / Sign up

Export Citation Format

Share Document