The last deglaciation simulated with a coupled atmosphere/ocean/ice sheet/solid earth model

Author(s):  
Uwe Mikolajewicz ◽  
Olga Erokhina ◽  
Marie-Luise Kapsch ◽  
Clemens Schannwell ◽  
Florian Ziemen

<p>It is challenging to model the last deglaciation, as it is characterized by abrupt millennial scale climate events, such as ice-sheet surges, that are superimposed on long-term climate changes, such as a global warming and the decay of a substantial part of the glacial ice sheets. Within PMIP, several groups have simulated the last deglaciation with CMIP-type models prescribing ice sheets from reconstructions. Whereas this type of simulations accounts for the effects of ice-sheet changes including meltwater release on climate, the prescribed ice sheet evolution is typically not consistent with the simulated climate evolution. Here we present a set of deglacial simulations that include fully interactive ice sheets that respond to changes in the climate. The setup also allows for feedbacks between ice sheets and climate and , hence, allows for a more realistic representation of the mechanisms of the last deglaciation, as the simulated climate and ice sheet changes are fully consistent..</p><p>The model consists of the coarse resolution set-up of MPI-ESM coupled to the ice sheet model mPISM (Northern Hemisphere and Antarctica) and the solid earth model VILMA. The model includes interactive icebergs and an automated calculation of the land-sea mask and river routing directions. A set of synchronously coupled simulations were started from an asynchronously coupled spin-up at 26ky and integrated throughout the deglaciation into the Holocene. The only prescribed external forcing are atmospheric concentrations of greenhouse gases and earth orbital parameters. One goal of this ensemble was to find the optimal combination of model parameters for the simulation of the deglaciation.</p><p>The model simulates the decay of the ice sheets, the rise of sea level, the flooding of shelf seas and the opening of passages. A large fraction of the ice sheet retreat is due to dynamical events (e.g. the final decay of the ice sheets on Barents Shelf or the Hudson Bay). Superimposed on the relatively slow glacial/interglacial transition are abrupt climate changes, triggered for example by recurrent ice sheet surges. These surges correspond to Heinrich Events tand result in a weakening of the AMOC. Three source regions for ice sheet surges occur during these simulations: from the Laurentide ice sheet through Hudson Strait, from the Laurentide ice sheet northward directly to the Arctic ocean, and from the Fennoscandian ice sheet into the Norwegian Sea. The characteristic climate response shows a large dependence on the surge location.</p><p>The simulated changes in strength of the AMOC are except for millennial-scale reduction events only moderate. However, during glacial periods, brine release is the central process for deep water formation in both hemispheres, in contrast to the Holocene. dDuring the deglaciation the ventilation of the deep ocean is strongly reduced, leading to a strong increase of the simulated deep water ages. This effect lasts longest in the deep North Pacific and extends in some simulations into the Holocene.</p>

2018 ◽  
Author(s):  
Niall Gandy ◽  
Lauren J. Gregoire ◽  
Jeremy C. Ely ◽  
Christopher D. Clark ◽  
David M. Hodgson ◽  
...  

Abstract. Uncertainties in future sea level projections are dominated by our limited understanding of the dynamical processes that control instabilities of marine ice sheets. A valuable case to examine these processes is the last deglaciation of the British-Irish Ice Sheet. The Minch Ice Stream, which drained a large proportion of ice from the northwest sector of the British-Irish Ice Sheet during the last deglaciation, is well constrained, with abundant empirical data which could be used to inform, validate and analyse numerical ice sheet simulations. We use BISICLES, a higher-order ice sheet model, to examine the dynamical processes that controlled the retreat of the Minch Ice Stream. We simulate retreat from the shelf edge under constant "warm" surface mass balance and subshelf melt, to isolate the role of internal ice dynamics from external forcings. The model simulates a slowdown of retreat as the ice stream becomes laterally confined at a "pinning-point" between mainland Scotland and the Isle of Lewis. At this stage, the presence of ice shelves became a major control on deglaciation, providing buttressing to upstream ice. Subsequently, the presence of a reverse slope inside the Minch Strait produces an acceleration in retreat, leading to a "collapsed" state, even when the climate returns to the initial "cold" conditions. Our simulations demonstrate the importance of the Marine Ice Sheet Instability and ice shelf buttressing during the deglaciation of parts of the British-Irish Ice Sheet. Thus, geological data could be used to constrain these processes in ice sheet models used for projecting the future of our contemporary ice sheets.


2019 ◽  
Vol 15 (4) ◽  
pp. 1621-1646
Author(s):  
Heather J. Andres ◽  
Lev Tarasov

Abstract. Abrupt climate shifts of large amplitudes were common features of the Earth's climate as it transitioned into and out of the last full glacial state approximately 20 000 years ago, but their causes are not yet established. Midlatitude atmospheric dynamics may have played an important role in these climate variations through their effects on heat and precipitation distributions, sea ice extent, and wind-driven ocean circulation patterns. This study characterizes deglacial winter wind changes over the North Atlantic (NAtl) in a suite of transient deglacial simulations using the PlaSim Earth system model (run at T42 resolution) and the TraCE-21ka (T31) simulation. Though driven with yearly updates in surface elevation, we detect multiple instances of NAtl jet transitions in the PlaSim simulations that occur within 10 simulation years and a sensitivity of the jet to background climate conditions. Thus, we suggest that changes to the NAtl jet may play an important role in abrupt glacial climate changes. We identify two types of simulated wind changes over the last deglaciation. Firstly, the latitude of the NAtl eddy-driven jet shifts northward over the deglaciation in a sequence of distinct steps. Secondly, the variability in the NAtl jet gradually shifts from a Last Glacial Maximum (LGM) state with a strongly preferred jet latitude and a restricted latitudinal range to one with no single preferred latitude and a range that is at least 11∘ broader. These changes can significantly affect ocean circulation. Changes to the position of the NAtl jet alter the location of the wind forcing driving oceanic surface gyres and the limits of sea ice extent, whereas a shift to a more variable jet reduces the effectiveness of the wind forcing at driving surface ocean transports. The processes controlling these two types of changes differ on the upstream and downstream ends of the NAtl eddy-driven jet. On the upstream side over eastern North America, the elevated ice sheet margin acts as a barrier to the winds in both the PlaSim simulations and the TraCE-21ka experiment. This constrains both the position and the latitudinal variability in the jet at LGM, so the jet shifts in sync with ice sheet margin changes. In contrast, the downstream side over the eastern NAtl is more sensitive to the thermal state of the background climate. Our results suggest that the presence of an elevated ice sheet margin in the south-eastern sector of the North American ice complex strongly constrains the deglacial position of the jet over eastern North America and the western North Atlantic as well as its variability.


2021 ◽  
Author(s):  
Sarah L Bradley ◽  
Michele Petrini ◽  
Raymond Sellevold ◽  
Miren Vizcaino ◽  
William H. Lipscomb ◽  
...  

<p>The last deglaciation provides as unique a framework to investigate the processes of ice sheet and climate interaction during periods of mass loss as in the current climate. Here we simulate the Last Glacial Maximum (LGM) northern hemisphere ice sheets climate, surface mass balance (SMB), and dynamics with the Community Earth System Model version 2 (CESM2, Danabasoglu et al., 2020)) and the Community Ice Sheet Model version 2 (CISM2, Lipscomb et al., 2019). This LGM simulation will be later used as starting point for coupled CESM2-CISM2 simulations of the last deglaciation.</p><p> </p><p>CESM2 is run at the nominal resolution used for IPCC-type projections (approx. 1 degree for all components). The model includes an advanced snow/firn and SMB calculation (van Kampenhout et al, 2019; Sellevold et al, 2019) the land component (CLM, cite) that has been evaluated and applied to the simulation of the future Greenland melt (van Kampenhout et al, 2020, Muntjewerf et al., 2020a,b, Sellevold & Vizcaino, 2020).</p><p> </p><p>Our analysis examines how the global, Arctic, and North Atlantic climate result in the simulated radiative and turbulent heat fluxes over the ice sheets, and the mass fluxes from precipitation, refreezing, runoff, and sublimation. We also examine the simulated ice streams in CISM2, which is run at 8 km under a higher-order approximation for ice flow.</p>


2021 ◽  
Author(s):  
Nathaelle Bouttes ◽  
Didier Roche ◽  
Fanny Lhardy ◽  
Aurelien Quiquet ◽  
Didier Paillard ◽  
...  

<p>The last deglaciation is a time of large climate transition from a cold Last Glacial Maximum at 21,000 years BP with extensive ice sheets, to the warmer Holocene 9,000 years BP onwards with reduced ice sheets. Despite more and more proxy data documenting this transition, the evolution of climate is not fully understood and difficult to simulate. The PMIP4 protocol (Ivanovic et al., 2016) has indicated which boundary conditions to use in model simulations during this transition. The common boundary conditions should enable consistent multi model and model-data comparisons. While the greenhouse gas concentration evolution and orbital forcing are well known and easy to prescribe, the evolution of ice sheets is less well constrained and several choices can be made by modelling groups. First, two ice sheet reconstructions are available: ICE-6G (Peltier et al., 2015) and GLAC-1D (Tarasov et al., 2014). On top of topographic changes, it is left to modelling groups to decide whether to account for the associated bathymetry and land-sea mask changes, which is technically more demanding. These choices could potentially lead to differences in the climate evolution, making model comparisons more complicated.</p><p>We use the iLOVECLIM model of intermediate complexity (Goosse et al., 2010) to evaluate the impact of different ice sheet reconstructions and the effect of bathymetry changes on the global climate evolution during the Last deglaciation. We test the two ice sheet reconstructions (ICE-6G and GLAC-1D), and have implemented changes of bathymetry and land-sea mask. In addition, we also evaluate the impact of accounting for the Antarctic ice sheet evolution compared to the Northern ice sheets only.</p><p>We show that despite showing the same long-term changes, the two reconstructions lead to different evolutions. The bathymetry plays a role, although only few changes take place before ~14ka. Finally, the impact of the Antarctic ice sheet is important during the deglaciation and should not be neglected.</p><p>References</p><p>Goosse, H., et al., Description of the Earth system model of intermediate complexity LOVECLIM version 1.2, Geosci. Model Dev., 3, 603–633, https://doi.org/10.5194/gmd-3-603-2010, 2010</p><p>Ivanovic, R. F., et al., Transient climate simulations of the deglaciation 21–9 thousand years before present (version 1) – PMIP4 Core experiment design and boundary conditions, Geosci. Model Dev., 9, 2563–2587, https://doi.org/10.5194/gmd-9-2563-2016, 2016</p><p>Peltier, W. R., Argus, D. F., and Drummond, R., Space geodesy constrains ice age terminal deglaciation: The global ICE-6G_C (VM5a) model, J. Geophys. Res.-Sol. Ea., 120, 450–487, doi:10.1002/2014JB011176, 2015</p><p>Tarasov,L.,  et al., The global GLAC-1c deglaciation chronology, melwater pulse 1-a, and a question of missing ice, IGS Symposium on Contribution of Glaciers and Ice Sheets to Sea-Level Change, 2014</p>


2021 ◽  
Author(s):  
Thomas V Lowell ◽  
et al.

Methods description, <sup>10</sup>Be sample metadata, and modeling results and error calculations.<br>


2021 ◽  
Author(s):  
Clemens Schannwell ◽  
Marie-Luise Kapsch ◽  
Uwe Mikolajewicz ◽  
Florian Ziemen

&lt;p&gt;Heinrich-type ice sheet surge events are among the most prominent signals in the paleoclimate data records. Even though these events have previously been intensely studied, it still remains an open question whether the cyclic ice sheet surges are triggered by internal ice dynamics, climate forcing, or a combination of the two. In simulations of the last deglaciation using the fully-coupled Max Planck Institute Earth System Model, surges from the European and North American ice sheets often occur in synchronicity. This model behaviour is in agreement with observations from sediment cores that find a similar pattern in the isotopic fingerprint of the deposited ice-rafted detritus. The synchronicity indicates that climate forcing is playing an important role in initiating ice sheet surges. In this study, we use the coupled ice-sheet-solid earth model PISM-VILMA in a northern hemispheric setup to investigate the modelled synchronicity of the surge events. More specifically, we perform an ensemble of simulations to study if the modelled synchronicity is a direct result of one of the surge locations causing other surge locations to be a activated as well. Moreover, we aim to investigate whether previously suggested trigger mechanisms such as regional changes in sea level or ocean temperatures are indeed key processes in controlling the synchronicity of these surge events.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document