EDR signatures observed by MMS : a statistical study of dayside events found with machine learning

Author(s):  
Quentin Lenouvel ◽  
Vincent Génot ◽  
Philippe Garnier ◽  
Benoit Lavraud ◽  
Sergio Toledo

<p>The understanding of magnetic reconnection's physical processes has considerably been improved thanks to the data of the Magnetopsheric Multiscale mission (MMS). However, a lot of work still has to be done to better characterize the core of the reconnection process : the electron diffusion region (EDR). We previously developed a machine learning algorithm to automatically detect EDR candidates, in order to increase the available list of events identified in the literature. However, identifying the parameters that are the most relevant to describe EDRs is complex, all the more that some of the small scale plasma/fields parameters show limitations in some configurations such as for low particle densities or large guide fields cases. In this study, we perform a statistical study of previously reported dayside EDRs as well as newly reported EDR candidates found using machine learning methods. We also show different single and multi-spacecraft parameters that can be used to better identify dayside EDRs in time series from MMS data recorded at the magnetopause. And finally we show an analysis of the link between the guide field and the strength of the energy conversion around each EDR.</p>

2021 ◽  
Vol 2083 (4) ◽  
pp. 042086
Author(s):  
Yuqi Qin

Abstract Machine learning algorithm is the core of artificial intelligence, is the fundamental way to make computer intelligent, its application in all fields of artificial intelligence. Aiming at the problems of the existing algorithms in the discrete manufacturing industry, this paper proposes a new 0-1 coding method to optimize the learning algorithm, and finally proposes a learning algorithm of “IG type learning only from the best”.


Author(s):  
Otmar Hilliges

Sensing of user input lies at the core of HCI research. Deciding which input mechanisms to use and how to implement them such that they work in a way that is easy to use, robust to various environmental factors and accurate in reconstruction of the users intent is a tremendously challenging problem. The main difficulties stem from the complex nature of human behavior which is highly non-linear, dynamic and context dependent and can often only be observed partially. Due to these complexities, research has turned its attention to data-driven techniques in order to build sophisticated and robust input recognition mechanisms. In this chapter we discuss the most important aspects that constitute data-driven signal analysis approaches. The aim is to provide the reader with an overall understanding of the process irrespective of the exact choice of sensor or machine learning algorithm.


Author(s):  
Kevin Matsuno ◽  
Vidya Nandikolla

Abstract Brain computer interface (BCI) systems are developed in biomedical fields to increase the quality of life. The development of a six class BCI controller to operate a semi-autonomous robotic arm is presented. The controller uses the following mental tasks: imagined left/right hand squeeze, imagined left/right foot tap, rest, one physical task, and jaw clench. To design a controller, the locations of active electrodes are verified and an appropriate machine learning algorithm is determined. Three subjects, ages ranging between 22-27, participated in five sessions of motor imagery experiments to record their brainwaves. These recordings were analyzed using event related potential plots and topographical maps to determine active electrodes. BCILAB was used to train two, three, five, and six class BCI controllers using linear discriminant analysis (LDA) and relevance vector machine (RVM) machine learning methods. The subjects' data was used to compare the two-method's performance in terms of error rate percentage. While a two class BCI controller showed the same accuracy for both methods, the three and five class BCI controllers showed the RVM approach having a higher accuracy than the LDA approach. For the five-class controller, error rate percentage was 33.3% for LDA and 29.2% for RVM. The six class BCI controller error rate percentage for both LDA and RVM was 34.5%. While the percentage values are the same, RVM was chosen as the desired machine learning algorithm based on the trend seen in the three and five class controller performances.


Author(s):  
G. Pilania ◽  
P. V. Balachandran ◽  
J. E. Gubernatis ◽  
T. Lookman

We explored the use of machine learning methods for classifying whether a particularABO3chemistry forms a perovskite or non-perovskite structured solid. Starting with three sets of feature pairs (the tolerance and octahedral factors, theAandBionic radii relative to the radius of O, and the bond valence distances between theAandBions from the O atoms), we used machine learning to create a hyper-dimensional partial dependency structure plot using all three feature pairs or any two of them. Doing so increased the accuracy of our predictions by 2–3 percentage points over using any one pair. We also included the Mendeleev numbers of theAandBatoms to this set of feature pairs. Doing this and using the capabilities of our machine learning algorithm, the gradient tree boosting classifier, enabled us to generate a new type of structure plot that has the simplicity of one based on using just the Mendeleev numbers, but with the added advantages of having a higher accuracy and providing a measure of likelihood of the predicted structure.


2017 ◽  
Vol 32 (3) ◽  
pp. 1079-1099 ◽  
Author(s):  
Michael Sprenger ◽  
Sebastian Schemm ◽  
Roger Oechslin ◽  
Johannes Jenkner

Abstract The south foehn is a characteristic downslope windstorm in the valleys of the northern Alps in Europe that demands reliable forecasts because of its substantial economic and societal impacts. Traditionally, a foehn is predicted based on pressure differences and tendencies across the Alpine ridge. Here, a new objective method for foehn prediction is proposed based on a machine learning algorithm (called AdaBoost, short for adaptive boosting). Three years (2000–02) of hourly simulations of the Consortium for Small-Scale Modeling’s (COSMO) numerical weather prediction (NWP) model and corresponding foehn wind observations are used to train the algorithm to distinguish between foehn and nonfoehn events. The predictors (133 in total) are subjectively extracted from the 7-km COSMO reanalysis dataset based on the main characteristics of foehn flows. The performance of the algorithm is then assessed with a validation dataset based on a contingency table that concisely summarizes the cooccurrence of observed and predicted (non)foehn events. The main performance measures are probability of detection (88.2%), probability of false detection (2.9%), missing rate (11.8%), correct alarm ratio (66.2%), false alarm ratio (33.8%), and missed alarm ratio (0.8%). To gain insight into the prediction model, the relevance of the single predictors is determined, resulting in a predominance of pressure differences across the Alpine ridge (i.e., similar to the traditional methods) and wind speeds at the foehn stations. The predominance of pressure-related predictors is further established in a sensitivity experiment where ~2500 predictors are objectively incorporated into the prediction model using the AdaBoost algorithm. The performance is very similar to the run with the subjectively determined predictors. Finally, some practical aspects of the new foehn index are discussed (e.g., the predictability of foehn events during the four seasons). The correct alarm rate is highest in winter (86.5%), followed by spring (79.6%), and then autumn (69.2%). The lowest rates are found in summer (51.2%).


2018 ◽  
Author(s):  
C.H.B. van Niftrik ◽  
F. van der Wouden ◽  
V. Staartjes ◽  
J. Fierstra ◽  
M. Stienen ◽  
...  

Author(s):  
Kunal Parikh ◽  
Tanvi Makadia ◽  
Harshil Patel

Dengue is unquestionably one of the biggest health concerns in India and for many other developing countries. Unfortunately, many people have lost their lives because of it. Every year, approximately 390 million dengue infections occur around the world among which 500,000 people are seriously infected and 25,000 people have died annually. Many factors could cause dengue such as temperature, humidity, precipitation, inadequate public health, and many others. In this paper, we are proposing a method to perform predictive analytics on dengue’s dataset using KNN: a machine-learning algorithm. This analysis would help in the prediction of future cases and we could save the lives of many.


Sign in / Sign up

Export Citation Format

Share Document