Data-based attribution of changes in flood quantiles across Europe between 1960 and 2010

Author(s):  
Miriam Bertola ◽  
Alberto Viglione ◽  
Sergiy Vorogushyn ◽  
David Lun ◽  
Bruno Merz ◽  
...  

<p>Changes in European floods during past decades have been analysed and detected by several studies. These studies typically focused on the mean flood behaviour, without distinguishing small and large floods. In this work, we investigate the causes of the detected flood trends across Europe over five decades (1960-2010), as a function of the return period. We adopt a regional non-stationary flood frequency approach to attribute observed flood changes to potential drivers, used as covariates of the parameters of the regional probability distribution of floods. The elasticities of floods with respect to the drivers and the regional contributions of the drivers to changes in flood quantiles associated with small and large return periods (i.e. 2-year and 100-year floods, respectively) are estimated by Bayesian inference, with prior information on the elasticity parameters obtained from expert knowledge and the literature. The data-based attribution approach is applied to annual maximum flood discharge seires from 2370 hydrometric stations in Europe. Extreme precipitation, antecedent soil moisture and snowmelt are the potential drivers considered. Results show that extreme precipitation mainly contributes to positive flood changes in North-western Europe. Both antecedent soil moisture and extreme precipitation contribute to negative flood changes in Southern Europe, with relative contributions varying with the return period. Antecedent soil moisture contributes the most to changes in small floods (i.e. T=2-10 years), while the two drivers contribute with comparable magnitude to changes in more extreme events. In eastern Europe, snowmelt clearly drives negative changes in both small and large floods.</p>

2021 ◽  
Vol 25 (3) ◽  
pp. 1347-1364
Author(s):  
Miriam Bertola ◽  
Alberto Viglione ◽  
Sergiy Vorogushyn ◽  
David Lun ◽  
Bruno Merz ◽  
...  

Abstract. Recent studies have shown evidence of increasing and decreasing trends for average floods and flood quantiles across Europe. Studies attributing observed changes in flood peaks to their drivers have mostly focused on the average flood behaviour, without distinguishing small and large floods. This paper proposes a new framework for attributing flood changes to potential drivers, as a function of return period (T), in a regional context. We assume flood peaks to follow a non-stationary regional Gumbel distribution, where the median flood and the 100-year growth factor are used as parameters. They are allowed to vary in time and between catchments as a function of the drivers quantified by covariates. The elasticities of floods with respect to the drivers and the contributions of the drivers to flood changes are estimated by Bayesian inference. The prior distributions of the elasticities of flood quantiles to the drivers are estimated by hydrological reasoning and from the literature. The attribution model is applied to European flood and covariate data and aims at attributing the observed flood trend patterns to specific drivers for different return periods at the regional scale. We analyse flood discharge records from 2370 hydrometric stations in Europe over the period 1960–2010. Extreme precipitation, antecedent soil moisture and snowmelt are the potential drivers of flood change considered in this study. Results show that, in northwestern Europe, extreme precipitation mainly contributes to changes in both the median (q2) and 100-year flood (q100), while the contributions of antecedent soil moisture are of secondary importance. In southern Europe, both antecedent soil moisture and extreme precipitation contribute to flood changes, and their relative importance depends on the return period. Antecedent soil moisture is the main contributor to changes in q2, while the contributions of the two drivers to changes in larger floods (T>10 years) are comparable. In eastern Europe, snowmelt drives changes in both q2 and q100.


2020 ◽  
Author(s):  
Miriam Bertola ◽  
Alberto Viglione ◽  
Sergiy Vorogushyn ◽  
David Lun ◽  
Bruno Merz ◽  
...  

Abstract. Recent studies have shown evidence of increasing and decreasing trends in mean annual floods and flood quantiles across Europe. Studies attributing observed changes in flood peaks to their drivers have mostly focused on mean annual floods. This paper proposes a new framework for attributing flood changes to potential drivers, as a function of return period (T), in a regional context. We assume flood peaks to follow a non-stationary regional Gumbel distribution, where the median flood and the 100-year growth factor are used as parameters. They are allowed to vary in time and between catchments as a function of the drivers quantified by covariates. The elasticities of floods with respect to the drivers and the contributions of the drivers to flood changes are estimated by Bayesian inference. The prior distributions of the elasticities of flood quantiles to the drivers are estimated by hydrological reasoning and from the literature. The attribution model is applied to European flood and covariate data and aims at attributing the observed flood trend patterns to specific drivers for different return periods. We analyse flood discharge records from 2370 hydrometric stations in Europe over the period 1960–2010. Extreme precipitation, antecedent soil moisture and snowmelt are the potential drivers of flood change considered in this study. Results show that, in northwestern Europe, extreme precipitation mainly contributes to changes in both the median (q2) and 100-year flood (q100), while the contributions of antecedent soil moisture are of secondary importance. In southern Europe, both antecedent soil moisture and extreme precipitation contribute to flood changes, and their relative importance depends on the return period. Antecedent soil moisture is the main contributor to changes in q2, while the contributions of the two drivers to changes in larger floods (T > 10 years) are comparable. In eastern Europe, snowmelt drives changes in both q2 and q100.


2006 ◽  
Vol 10 (2) ◽  
pp. 233-243 ◽  
Author(s):  
E. Gaume

Abstract. This paper presents some analytical results and numerical illustrations on the asymptotic properties of flood peak distributions obtained through derived flood frequency approaches. It confirms and extends the results of previous works: i.e. the shape of the flood peak distributions are asymptotically controlled by the rainfall statistical properties, given limited and reasonable assumptions concerning the rainfall-runoff process. This result is partial so far: the impact of the rainfall spatial heterogeneity has not been studied for instance. From a practical point of view, it provides a general framework for analysis of the outcomes of previous works based on derived flood frequency approaches and leads to some proposals for the estimation of very large return-period flood quantiles. This paper, focussed on asymptotic distribution properties, does not propose any new approach for the extrapolation of flood frequency distribution to estimate intermediate return period flood quantiles. Nevertheless, the large distance between frequent flood peak values and the asymptotic values as well as the simulations conducted in this paper help quantifying the ill condition of the problem of flood frequency distribution extrapolation: it illustrates how large the range of possibilities for the shapes of flood peak distributions is.


2005 ◽  
Vol 9 (4) ◽  
pp. 431-448 ◽  
Author(s):  
H. Hlavcova ◽  
S. Kohnova ◽  
R. Kubes ◽  
J. Szolgay ◽  
M. Zvolensky

Abstract. Since medium and long-term precipitation forecasts are still not reliable enough, rough estimates of the degree of the extremity of forthcoming flood events that might occur in the course of dangerous meteorological situations approaching a basin could be useful to decision-makers as additional information for flood warnings. One approach to answering such a problem is to use real-time data on the soil moisture conditions in a catchment in conjunction with estimates of the extremity of the future rainfall and experience with the basin's behaviour during historical floods. A scenario-based method is proposed for such a future flood risk estimation, based on an a priori evaluation of the extremity of hypothetical floods generated by combinations of synthetic extreme precipitation and previously observed antecedent pre-flood basin saturations. The Hron river basin, located in central Slovakia, was chosen as the pilot basin in the case study. A time series of the basin's average daily precipitation was derived using spatial interpolation techniques. A lumped HBV-type daily conceptual rainfall-runoff model was adopted for modelling runoff. Analysis of the relationship of the modelled historical pre-flood soil moisture and flood causing-precipitation revealed the independence of both quantities for rainfall durations lasting 1 to 5 days. The basin's average annual maximum 1 to 5 day precipitation depths were analysed statistically and synthetic extreme precipitation scenarios associated with rainfall depths with return periods of 5, 20, 50 and 100 years, durations of 1 to 5 days and temporal distribution of extreme rainfall observed in the past were set up for runoff simulation. Using event-based flood simulations, synthetic flood waves were generated for random combinations of the rainfall scenarios and historical pre-flood soil moisture conditions. The effect of any antecedent basin saturation on the extremity of floods was quantified empirically and critical values of the basin saturation leading to floods with a higher return period than the return period of precipitation were identified. A method for implementing such critical values into flood risk warnings in a hydrological forecasting and warning system in the basin was suggested.


2005 ◽  
Vol 2 (5) ◽  
pp. 1835-1864 ◽  
Author(s):  
E. Gaume

Abstract. This paper presents some analytical results and numerical illustrations on the asymptotic properties of flood peak distributions obtained through derived flood frequency approaches. It confirms and extends the results of previous works: i.e. the shape of the flood peak distributions are asymptotically controlled by the rainfall statistical properties, given limited and reasonable assumptions concerning the rainfall-runoff process. This previous result is partial so far: only two types of rainfall intensity distributions have been considered (extreme value distributions of types I and II), and the impact of the rainfall spatial heterogeneity has not been studied. From a practical point of view, it provides a general framework for analysis of the outcomes of previous works based on derived flood frequency approaches and leads to some proposals for the estimation of very large return-period flood quantiles. This paper, focussed on asymptotic distribution properties, does not propose any new approach for the extrapolation of flood frequency distribution to estimate intermediate return period flood quantiles. Nevertheless, the large distance between frequent flood peak values and the asymptotic values as well as the simulations conducted in this paper help quantifying the ill condition of the problem of flood frequency distribution extrapolation: it illustrates how large the range of possibilities for the shapes of flood peak distributions is.


2021 ◽  
Author(s):  
Yves Tramblay ◽  
Gabriele Villarini ◽  
El Mahdi El Khalki ◽  
Gabi Gründemann ◽  
Denis Hughes

<p>The African continent is severely impacted by floods, with an increasing vulnerability to these events in the most recent decades. Our improved preparation against and response to this hazard would benefit from an enhanced understanding of the physical processes at play. A database recently compiled on Africa allows to conduct studies at the continental scale: the African Database of Hydrometric Indices (ADHI: https://doi.org/10.5194/essd-2020-281). Daily river discharge data have been extracted for 399 African rivers to analyze the seasonality of observed annual maximum discharge. In addition, extreme precipitation from CHIRPS and ERA5, and soil moisture from ERA5-Land between 1981 and 2018 have been also considered as potential flood drivers. The database includes a total of 11,302 flood events, covering most African regions. The analysis is based on directional statistics to compare the annual maximum river discharge with annual maximum rainfall and soil moisture. Results show that the annual peak flow in most areas is more strongly associated with the annual peak of soil moisture than of extreme precipitation. In addition, the interannual variability of flood magnitudes is better explained by the variability of annual maximum soil moisture or the precipitation summed over 5 days prior to an event, than by changes in the annual maximum daily precipitation. These results have important implications for the design of efficient flood forecasting systems or the investigation of the long-term evolution of these hydrological hazards.</p>


2019 ◽  
Vol 20 (8) ◽  
pp. 1667-1686 ◽  
Author(s):  
Qian Cao ◽  
Ali Mehran ◽  
F. Martin Ralph ◽  
Dennis P. Lettenmaier

Abstract A body of work over the last decade or so has demonstrated that most major floods along the U.S. West Coast are attributable to atmospheric rivers (ARs). Recent studies suggest that observed changes in extreme precipitation associated with a general warming of the western United States have not necessarily led to corresponding changes in floods, and changes in antecedent hydrological conditions could be a primary missing link. Here we examine the role of antecedent soil moisture (ASM) conditions on historical AR flooding on California’s Russian River basin, a coastal watershed whose winter precipitation extremes are dominated by ARs. We examined the effect of observed warming on ASM for the period 1950–2017. We first constructed an hourly precipitation product at 1/32° spatial resolution. We used the Distributed Hydrology Soil Vegetation Model (DHSVM) to estimate storm total runoff volumes and soil moisture. We found that up to 95% of peaks-over-threshold (POT) extreme discharge events were associated with ARs. The storm runoff–precipitation ratio generally increased with wetter prestorm conditions, and the relationship was stronger as drainage area increased. We found no trends in extreme precipitation but weak downward trends in extreme discharge. The latter were mostly consistent with weak downward trends in the first 2-day storm precipitation. We found no trends in ASM; however, ASM was significantly correlated with peak flow. The ASM was affected more by antecedent precipitation than evapotranspiration, and hence temperature increases had weak effects on ASM.


2008 ◽  
Vol 39 (5-6) ◽  
pp. 385-401
Author(s):  
J. V. Sutcliffe ◽  
F. A. K. Farquharson ◽  
E. L. Tate ◽  
S. S. Folwell

Relations between mean annual flood estimates and basin area and precipitation, as well as dimensionless flood frequency curves, have been derived from a number of groups of gauging stations in the southern Caucasus. Total precipitation and its seasonal distribution are extremely variable at this location. The importance of antecedent soil moisture deficit (closely linked to the seasonal distribution of precipitation) in determining the shape of flood frequency curves is discussed through previous empirical studies and recent sensitivity analyses. The varying shape of regional curves from the southern Caucasus is related to the variations in soil moisture deficit.


2020 ◽  
Vol 21 (8) ◽  
pp. 1827-1845 ◽  
Author(s):  
Qian Cao ◽  
Alexander Gershunov ◽  
Tamara Shulgina ◽  
F. Martin Ralph ◽  
Ning Sun ◽  
...  

AbstractPrecipitation extremes are projected to become more frequent along the U.S. West Coast due to increased atmospheric river (AR) activity, but the frequency of less intense precipitation events may decrease. Antecedent soil moisture (ASM) conditions can have a large impact on flood responses, especially if prestorm precipitation decreases. Taken together with increased antecedent evaporative demand due to warming, this would result in reduced soil moisture at the onset of extreme precipitation events. We examine the impact of ASM on AR-related floods in a warming climate in three basins that form a transect along the U.S. Pacific Coast: the Chehalis River basin in Washington, the Russian River basin in Northern California, and the Santa Margarita River basin in Southern California. We ran the Distributed Hydrology Soil Vegetation Model (DHSVM) over the three river basins using forcings downscaled from 10 global climate models (GCMs). We examined the dynamic role of ASM by comparing the changes in the largest 50, 100, and 150 extreme events in two periods, 1951–2000 and 2050–99. In the Chehalis basin, the projected fraction of AR-related extreme discharge events slightly decreases. In the Russian basin, this fraction increases, however, and more substantially so in the Santa Margarita basin. This is due to increases in AR-related extreme precipitation events, as well as the fact that the relationship of extreme precipitation to extreme discharge is strengthened by projected increases in year-to-year volatility of annual precipitation in California, which increases the likelihood of concurrent occurrence of large storms and wet ASM conditions.


Sign in / Sign up

Export Citation Format

Share Document